Nuprl Lemma : rv-disjoint-rv-partial-sum
∀p:FinProbSpace. ∀f:ℕ ─→ ℕ. ∀X:n:ℕ ─→ RandomVariable(p;f[n]). ∀N:ℕ. ∀Z:RandomVariable(p;N). ∀n:ℕ.
  (∀i:ℕn - 1. rv-disjoint(p;N;X[i];Z)) 
⇒ (∀k:ℕn. rv-disjoint(p;N;rv-partial-sum(k;i.X[i]);Z)) supposing ∀i:ℕn. f[i] < N
Proof
Definitions occuring in Statement : 
rv-partial-sum: rv-partial-sum(n;i.X[i])
, 
rv-disjoint: rv-disjoint(p;n;X;Y)
, 
random-variable: RandomVariable(p;n)
, 
finite-prob-space: FinProbSpace
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ─→ B[x]
, 
subtract: n - m
, 
natural_number: $n
Lemmas : 
member-less_than, 
int_seg_subtype-nat, 
false_wf, 
int_seg_wf, 
less_than_transitivity1, 
less_than_irreflexivity, 
all_wf, 
subtract_wf, 
rv-disjoint_wf, 
subtype_rel-random-variable, 
sq_stable__le, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-associates, 
zero-add, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel2, 
less_than_wf, 
length_wf_nat, 
rationals_wf, 
le_weakening2, 
isect_wf, 
set_wf, 
primrec-wf2, 
random-variable_wf, 
nat_wf, 
finite-prob-space_wf, 
decidable__lt, 
add-swap, 
add-commutes, 
lelt_wf, 
decidable__equal_int, 
int-subtype-rationals, 
rv-disjoint-const, 
true_wf, 
squash_wf, 
iff_weakening_equal, 
subtype_rel-int_seg, 
subtype_rel_dep_function, 
Error :sum_unroll_base_q, 
int_subtype_base, 
subtype_base_sq, 
le-add-cancel-alt, 
le_wf, 
minus-minus, 
minus-zero, 
le-add-cancel, 
not-equal-2, 
not-le-2, 
decidable__le, 
rv-disjoint-rv-add2, 
rv-partial-sum_wf, 
subtype_rel_self, 
Error :qsum_wf, 
Error :sum_unroll_hi_q, 
qadd_wf, 
less_than_transitivity2
\mforall{}p:FinProbSpace.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}X:n:\mBbbN{}  {}\mrightarrow{}  RandomVariable(p;f[n]).  \mforall{}N:\mBbbN{}.  \mforall{}Z:RandomVariable(p;N).  \mforall{}n:\mBbbN{}.
    (\mforall{}i:\mBbbN{}n  -  1.  rv-disjoint(p;N;X[i];Z))  {}\mRightarrow{}  (\mforall{}k:\mBbbN{}n.  rv-disjoint(p;N;rv-partial-sum(k;i.X[i]);Z)) 
    supposing  \mforall{}i:\mBbbN{}n.  f[i]  <  N
Date html generated:
2015_07_17-AM-08_02_29
Last ObjectModification:
2015_07_16-AM-09_52_06
Home
Index