Nuprl Lemma : expectation-monotone-in-first

[p:FinProbSpace]. ∀[n,m:ℕ].  ∀[X:RandomVariable(p;n)]. (E(n;X) E(m;X) ∈ ℚsupposing n ≤ m


Proof




Definitions occuring in Statement :  expectation: E(n;F) random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B equal: t ∈ T rationals:
Lemmas :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf random-variable_wf le_wf false_wf decidable__le subtract_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_weakening2 nat_wf finite-prob-space_wf expectation-constant null-seq_wf int_seg_wf length_wf rationals_wf subtype_rel-random-variable p-outcome_wf equal_wf eq_int_wf bool_wf equal-wf-base int_subtype_base assert_wf bnot_wf not_wf equal-wf-T-base weighted-sum_wf2 expectation_wf not-le-2 rv-shift_wf le-add-cancel-alt iff_weakening_equal uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot
\mforall{}[p:FinProbSpace].  \mforall{}[n,m:\mBbbN{}].    \mforall{}[X:RandomVariable(p;n)].  (E(n;X)  =  E(m;X))  supposing  n  \mleq{}  m



Date html generated: 2015_07_17-AM-08_00_14
Last ObjectModification: 2015_02_03-PM-09_45_00

Home Index