Nuprl Lemma : expectation-monotone-in-first
∀[p:FinProbSpace]. ∀[n,m:ℕ].  ∀[X:RandomVariable(p;n)]. (E(n;X) = E(m;X) ∈ ℚ) supposing n ≤ m
Proof
Definitions occuring in Statement : 
expectation: E(n;F)
, 
random-variable: RandomVariable(p;n)
, 
finite-prob-space: FinProbSpace
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
equal: s = t ∈ T
, 
rationals: ℚ
Lemmas : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
random-variable_wf, 
le_wf, 
false_wf, 
decidable__le, 
subtract_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
le_weakening2, 
nat_wf, 
finite-prob-space_wf, 
expectation-constant, 
null-seq_wf, 
int_seg_wf, 
length_wf, 
rationals_wf, 
subtype_rel-random-variable, 
p-outcome_wf, 
equal_wf, 
eq_int_wf, 
bool_wf, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-T-base, 
weighted-sum_wf2, 
expectation_wf, 
not-le-2, 
rv-shift_wf, 
le-add-cancel-alt, 
iff_weakening_equal, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot
\mforall{}[p:FinProbSpace].  \mforall{}[n,m:\mBbbN{}].    \mforall{}[X:RandomVariable(p;n)].  (E(n;X)  =  E(m;X))  supposing  n  \mleq{}  m
Date html generated:
2015_07_17-AM-08_00_14
Last ObjectModification:
2015_02_03-PM-09_45_00
Home
Index