Nuprl Lemma : right_move_minus_lemma
∀x,G:Top.  (right-move(-(G);x) ~ -(left-move(G;x)))
Proof
Definitions occuring in Statement : 
Game-minus: -(G), 
right-move: right-move(g;x), 
left-move: left-move(g;x), 
top: Top, 
all: ∀x:A. B[x], 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
Game-minus: -(G), 
left-move: left-move(g;x), 
right-move: right-move(g;x), 
mkGame: {mkGame(f[a] with a:L | g[b] with b:R}, 
Wsup: Wsup(a;b), 
pi2: snd(t), 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
hypothesis, 
introduction, 
extract_by_obid
Latex:
\mforall{}x,G:Top.    (right-move(-(G);x)  \msim{}  -(left-move(G;x)))
Date html generated:
2018_05_22-PM-09_52_57
Last ObjectModification:
2018_05_20-PM-10_38_20
Theory : Numbers!and!Games
Home
Index