Step
*
of Lemma
generated-s-subgroup_wf
∀[sg:s-Group]. ∀[P:Point ⟶ ℙ]. generated-s-subgroup(sg;f.P[f]) ∈ s-Group supposing ∀f:Point. (P[f]
⇒ P[f^-1])
BY
{ (ProveWfLemma THEN D 0 THEN Auto THEN ExRepD) }
1
1. sg : s-Group
2. P : Point ⟶ ℙ
3. ∀f:Point. (P[f]
⇒ P[f^-1])
⊢ ∃L:Point List. ((∀f∈L.P[f]) ∧ 1 ≡ reduce(λx,y. (x y);1;L))
2
1. sg : s-Group
2. P : Point ⟶ ℙ
3. ∀f:Point. (P[f]
⇒ P[f^-1])
4. g : Point
5. L : Point List
6. (∀f∈L.P[f])
7. g ≡ reduce(λx,y. (x y);1;L)
⊢ ∃L:Point List. ((∀f∈L.P[f]) ∧ g^-1 ≡ reduce(λx,y. (x y);1;L))
3
1. sg : s-Group
2. P : Point ⟶ ℙ
3. ∀f:Point. (P[f]
⇒ P[f^-1])
4. ∀g:Point
((∃L:Point List. ((∀f∈L.P[f]) ∧ g ≡ reduce(λx,y. (x y);1;L)))
⇒ (∃L:Point List. ((∀f∈L.P[f]) ∧ g^-1 ≡ reduce(λx,y. (x y);1;L))))
5. g : Point
6. y : Point
7. L1 : Point List
8. (∀f∈L1.P[f])
9. g ≡ reduce(λx,y. (x y);1;L1)
10. L : Point List
11. (∀f∈L.P[f])
12. y ≡ reduce(λx,y. (x y);1;L)
⊢ ∃L:Point List. ((∀f∈L.P[f]) ∧ (g y) ≡ reduce(λx,y. (x y);1;L))
Latex:
Latex:
\mforall{}[sg:s-Group]. \mforall{}[P:Point {}\mrightarrow{} \mBbbP{}].
generated-s-subgroup(sg;f.P[f]) \mmember{} s-Group supposing \mforall{}f:Point. (P[f] {}\mRightarrow{} P[f\^{}-1])
By
Latex:
(ProveWfLemma THEN D 0 THEN Auto THEN ExRepD)
Home
Index