Nuprl Lemma : generated-s-subgroup_wf
∀[sg:s-Group]. ∀[P:Point ⟶ ℙ].  generated-s-subgroup(sg;f.P[f]) ∈ s-Group supposing ∀f:Point. (P[f] 
⇒ P[f^-1])
Proof
Definitions occuring in Statement : 
generated-s-subgroup: generated-s-subgroup(sg;f.P[f])
, 
s-group: s-Group
, 
sg-inv: x^-1
, 
ss-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
generated-s-subgroup: generated-s-subgroup(sg;f.P[f])
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
s-group: s-Group
, 
sg-subgroup: sg-subgroup(sg;x.P[x])
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
Lemmas referenced : 
mk-s-subgroup_wf, 
exists_wf, 
list_wf, 
l_all_wf2, 
l_member_wf, 
ss-point_wf, 
ss-eq_wf, 
reduce_wf, 
sg-op_wf, 
sg-id_wf, 
all_wf, 
s-group-structure_subtype1, 
s-group_subtype1, 
subtype_rel_transitivity, 
s-group_wf, 
s-group-structure_wf, 
separation-space_wf, 
sg-inv_wf, 
ss-eq_weakening, 
l_all_nil, 
reduce_nil_lemma, 
nil_wf, 
reverse_wf, 
map_wf, 
l_all_reverse, 
l_all_iff, 
iff_weakening_equal, 
member-map, 
reverse-cons, 
map_cons_lemma, 
reduce_cons_lemma, 
reverse_nil_lemma, 
map_nil_lemma, 
list_induction, 
sg-inv-op, 
sg-op-id, 
sg-op_functionality, 
ss-eq_functionality, 
uiff_transitivity, 
sg-inv-unique, 
ss-eq_inversion, 
equal_wf, 
reduce-append, 
sg-inv-inv, 
sg-inv-of-op, 
ss-eq_transitivity, 
sg-assoc, 
sg-id-op, 
sg-inv-id, 
sg-inv_functionality, 
l_all_append, 
append_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
because_Cache, 
hypothesis, 
productEquality, 
lambdaFormation, 
applyEquality, 
setElimination, 
rename, 
functionExtensionality, 
setEquality, 
independent_isectElimination, 
independent_pairFormation, 
productElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
functionEquality, 
universeEquality, 
isect_memberEquality, 
cumulativity, 
independent_functionElimination, 
voidEquality, 
voidElimination, 
dependent_functionElimination, 
dependent_pairFormation, 
impliesFunctionality, 
addLevel
Latex:
\mforall{}[sg:s-Group].  \mforall{}[P:Point  {}\mrightarrow{}  \mBbbP{}].
    generated-s-subgroup(sg;f.P[f])  \mmember{}  s-Group  supposing  \mforall{}f:Point.  (P[f]  {}\mRightarrow{}  P[f\^{}-1])
Date html generated:
2017_10_02-PM-03_25_27
Last ObjectModification:
2017_07_28-AM-06_57_14
Theory : constructive!algebra
Home
Index