Nuprl Lemma : generated-s-subgroup_wf

[sg:s-Group]. ∀[P:Point ⟶ ℙ].  generated-s-subgroup(sg;f.P[f]) ∈ s-Group supposing ∀f:Point. (P[f]  P[f^-1])


Proof




Definitions occuring in Statement :  generated-s-subgroup: generated-s-subgroup(sg;f.P[f]) s-group: s-Group sg-inv: x^-1 ss-point: Point uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a generated-s-subgroup: generated-s-subgroup(sg;f.P[f]) so_lambda: λ2x.t[x] prop: and: P ∧ Q all: x:A. B[x] subtype_rel: A ⊆B so_apply: x[s] s-group: s-Group sg-subgroup: sg-subgroup(sg;x.P[x]) cand: c∧ B implies:  Q exists: x:A. B[x] guard: {T} top: Top iff: ⇐⇒ Q rev_implies:  Q rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q)
Lemmas referenced :  mk-s-subgroup_wf exists_wf list_wf l_all_wf2 l_member_wf ss-point_wf ss-eq_wf reduce_wf sg-op_wf sg-id_wf all_wf s-group-structure_subtype1 s-group_subtype1 subtype_rel_transitivity s-group_wf s-group-structure_wf separation-space_wf sg-inv_wf ss-eq_weakening l_all_nil reduce_nil_lemma nil_wf reverse_wf map_wf l_all_reverse l_all_iff iff_weakening_equal member-map reverse-cons map_cons_lemma reduce_cons_lemma reverse_nil_lemma map_nil_lemma list_induction sg-inv-op sg-op-id sg-op_functionality ss-eq_functionality uiff_transitivity sg-inv-unique ss-eq_inversion equal_wf reduce-append sg-inv-inv sg-inv-of-op ss-eq_transitivity sg-assoc sg-id-op sg-inv-id sg-inv_functionality l_all_append append_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality because_Cache hypothesis productEquality lambdaFormation applyEquality setElimination rename functionExtensionality setEquality independent_isectElimination independent_pairFormation productElimination axiomEquality equalityTransitivity equalitySymmetry instantiate functionEquality universeEquality isect_memberEquality cumulativity independent_functionElimination voidEquality voidElimination dependent_functionElimination dependent_pairFormation impliesFunctionality addLevel

Latex:
\mforall{}[sg:s-Group].  \mforall{}[P:Point  {}\mrightarrow{}  \mBbbP{}].
    generated-s-subgroup(sg;f.P[f])  \mmember{}  s-Group  supposing  \mforall{}f:Point.  (P[f]  {}\mRightarrow{}  P[f\^{}-1])



Date html generated: 2017_10_02-PM-03_25_27
Last ObjectModification: 2017_07_28-AM-06_57_14

Theory : constructive!algebra


Home Index