Nuprl Lemma : sg-inv-unique

[sg:s-Group]. ∀[x,y:Point].  x^-1 ≡ supposing (x y) ≡ 1


Proof




Definitions occuring in Statement :  s-group: s-Group sg-op: (x y) sg-inv: x^-1 sg-id: 1 ss-eq: x ≡ y ss-point: Point uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a ss-eq: x ≡ y not: ¬A implies:  Q false: False subtype_rel: A ⊆B prop: all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) guard: {T}
Lemmas referenced :  ss-sep_wf s-group_subtype1 sg-inv_wf ss-eq_wf sg-op_wf sg-id_wf ss-point_wf s-group_wf ss-eq_weakening ss-eq_functionality sg-op_functionality sg-assoc ss-eq_inversion uiff_transitivity sg-inv-op sg-op-id sg-id-op
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality because_Cache extract_by_obid isectElimination applyEquality hypothesis isect_memberEquality equalityTransitivity equalitySymmetry voidElimination independent_functionElimination independent_isectElimination productElimination

Latex:
\mforall{}[sg:s-Group].  \mforall{}[x,y:Point].    x\^{}-1  \mequiv{}  y  supposing  (x  y)  \mequiv{}  1



Date html generated: 2017_10_02-PM-03_24_57
Last ObjectModification: 2017_06_22-PM-05_59_04

Theory : constructive!algebra


Home Index