Nuprl Lemma : s-group_subtype1
s-Group ⊆r s-GroupStructure
Proof
Definitions occuring in Statement : 
s-group: s-Group
, 
s-group-structure: s-GroupStructure
, 
subtype_rel: A ⊆r B
Definitions unfolded in proof : 
s-group: s-Group
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
s-group-structure_wf, 
s-group-axioms_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
setEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
cumulativity, 
sqequalHypSubstitution, 
isectElimination
Latex:
s-Group  \msubseteq{}r  s-GroupStructure
Date html generated:
2017_10_02-PM-03_24_46
Last ObjectModification:
2017_06_23-AM-11_21_43
Theory : constructive!algebra
Home
Index