Nuprl Lemma : s-group-structure_wf

s-GroupStructure ∈ 𝕌'


Proof




Definitions occuring in Statement :  s-group-structure: s-GroupStructure member: t ∈ T universe: Type
Definitions unfolded in proof :  s-group-structure: s-GroupStructure member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] record+: record+ record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt implies:  Q prop: or: P ∨ Q all: x:A. B[x]
Lemmas referenced :  separation-space_wf record+_wf ss-point_wf subtype_rel_self all_wf ss-sep_wf or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin equalityTransitivity equalitySymmetry sqequalRule lambdaEquality cumulativity hypothesisEquality tokenEquality dependentIntersectionElimination applyEquality functionEquality dependentIntersectionEqElimination because_Cache functionExtensionality universeEquality

Latex:
s-GroupStructure  \mmember{}  \mBbbU{}'



Date html generated: 2017_10_02-PM-03_24_26
Last ObjectModification: 2017_06_23-AM-11_09_33

Theory : constructive!algebra


Home Index