Nuprl Lemma : s-group-axioms_wf

[sg:s-GroupStructure]. (s-group-axioms(sg) ∈ ℙ)


Proof




Definitions occuring in Statement :  s-group-axioms: s-group-axioms(sg) s-group-structure: s-GroupStructure uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T s-group-axioms: s-group-axioms(sg) prop: and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  uall_wf ss-point_wf s-group-structure_subtype1 ss-eq_wf sg-op_wf sg-id_wf sg-inv_wf s-group-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis lambdaEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[sg:s-GroupStructure].  (s-group-axioms(sg)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_02-PM-03_24_40
Last ObjectModification: 2017_06_23-AM-11_18_33

Theory : constructive!algebra


Home Index