Nuprl Lemma : s-group-axioms_wf
∀[sg:s-GroupStructure]. (s-group-axioms(sg) ∈ ℙ)
Proof
Definitions occuring in Statement : 
s-group-axioms: s-group-axioms(sg)
, 
s-group-structure: s-GroupStructure
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
s-group-axioms: s-group-axioms(sg)
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
uall_wf, 
ss-point_wf, 
s-group-structure_subtype1, 
ss-eq_wf, 
sg-op_wf, 
sg-id_wf, 
sg-inv_wf, 
s-group-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
lambdaEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[sg:s-GroupStructure].  (s-group-axioms(sg)  \mmember{}  \mBbbP{})
Date html generated:
2017_10_02-PM-03_24_40
Last ObjectModification:
2017_06_23-AM-11_18_33
Theory : constructive!algebra
Home
Index