Nuprl Lemma : sg-op_wf
∀[sg:s-GroupStructure]. ∀[x,y:Point].  ((x y) ∈ Point)
Proof
Definitions occuring in Statement : 
s-group-structure: s-GroupStructure, 
sg-op: (x y), 
ss-point: Point, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
s-group-structure: s-GroupStructure, 
record+: record+, 
record-select: r.x, 
subtype_rel: A ⊆r B, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
or: P ∨ Q, 
so_apply: x[s], 
all: ∀x:A. B[x], 
sg-op: (x y)
Lemmas referenced : 
subtype_rel_self, 
ss-point_wf, 
all_wf, 
ss-sep_wf, 
or_wf, 
s-group-structure_subtype1, 
s-group-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
dependentIntersectionElimination, 
sqequalRule, 
dependentIntersectionEqElimination, 
thin, 
hypothesis, 
applyEquality, 
tokenEquality, 
extract_by_obid, 
isectElimination, 
functionEquality, 
lambdaEquality, 
because_Cache, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
hypothesisEquality, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[sg:s-GroupStructure].  \mforall{}[x,y:Point].    ((x  y)  \mmember{}  Point)
Date html generated:
2017_10_02-PM-03_24_31
Last ObjectModification:
2017_06_23-AM-11_12_25
Theory : constructive!algebra
Home
Index