Nuprl Lemma : s-group-structure_subtype1
s-GroupStructure ⊆r SeparationSpace
Proof
Definitions occuring in Statement :
s-group-structure: s-GroupStructure
,
separation-space: SeparationSpace
,
subtype_rel: A ⊆r B
Definitions unfolded in proof :
subtype_rel: A ⊆r B
,
member: t ∈ T
,
s-group-structure: s-GroupStructure
,
record+: record+,
record-select: r.x
,
eq_atom: x =a y
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
uall: ∀[x:A]. B[x]
,
so_lambda: λ2x.t[x]
,
implies: P
⇒ Q
,
prop: ℙ
,
or: P ∨ Q
,
so_apply: x[s]
,
all: ∀x:A. B[x]
Lemmas referenced :
subtype_rel_self,
ss-point_wf,
all_wf,
ss-sep_wf,
or_wf,
s-group-structure_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaEquality,
sqequalHypSubstitution,
dependentIntersectionElimination,
sqequalRule,
dependentIntersectionEqElimination,
thin,
cut,
hypothesis,
applyEquality,
tokenEquality,
introduction,
extract_by_obid,
isectElimination,
functionEquality,
because_Cache,
functionExtensionality,
equalityTransitivity,
equalitySymmetry,
hypothesisEquality
Latex:
s-GroupStructure \msubseteq{}r SeparationSpace
Date html generated:
2017_10_02-PM-03_24_27
Last ObjectModification:
2017_06_23-AM-11_10_34
Theory : constructive!algebra
Home
Index