Nuprl Lemma : s-group-structure_subtype1

s-GroupStructure ⊆SeparationSpace


Proof




Definitions occuring in Statement :  s-group-structure: s-GroupStructure separation-space: SeparationSpace subtype_rel: A ⊆B
Definitions unfolded in proof :  subtype_rel: A ⊆B member: t ∈ T s-group-structure: s-GroupStructure record+: record+ record-select: r.x eq_atom: =a y ifthenelse: if then else fi  btrue: tt uall: [x:A]. B[x] so_lambda: λ2x.t[x] implies:  Q prop: or: P ∨ Q so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  subtype_rel_self ss-point_wf all_wf ss-sep_wf or_wf s-group-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution dependentIntersectionElimination sqequalRule dependentIntersectionEqElimination thin cut hypothesis applyEquality tokenEquality introduction extract_by_obid isectElimination functionEquality because_Cache functionExtensionality equalityTransitivity equalitySymmetry hypothesisEquality

Latex:
s-GroupStructure  \msubseteq{}r  SeparationSpace



Date html generated: 2017_10_02-PM-03_24_27
Last ObjectModification: 2017_06_23-AM-11_10_34

Theory : constructive!algebra


Home Index