Nuprl Lemma : sg-inv_wf

[sg:s-GroupStructure]. ∀[x:Point].  (x^-1 ∈ Point)


Proof




Definitions occuring in Statement :  s-group-structure: s-GroupStructure sg-inv: x^-1 ss-point: Point uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T s-group-structure: s-GroupStructure record+: record+ record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt so_lambda: λ2x.t[x] implies:  Q prop: or: P ∨ Q so_apply: x[s] all: x:A. B[x] sg-inv: x^-1
Lemmas referenced :  subtype_rel_self ss-point_wf all_wf ss-sep_wf or_wf s-group-structure_subtype1 s-group-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution dependentIntersectionElimination sqequalRule dependentIntersectionEqElimination thin hypothesis applyEquality tokenEquality extract_by_obid isectElimination functionEquality lambdaEquality because_Cache functionExtensionality equalityTransitivity equalitySymmetry hypothesisEquality axiomEquality isect_memberEquality

Latex:
\mforall{}[sg:s-GroupStructure].  \mforall{}[x:Point].    (x\^{}-1  \mmember{}  Point)



Date html generated: 2017_10_02-PM-03_24_30
Last ObjectModification: 2017_06_23-AM-11_11_43

Theory : constructive!algebra


Home Index