Nuprl Lemma : sg-id-op
∀[sg:s-Group]. ∀[x:Point].  (1 x) ≡ x
Proof
Definitions occuring in Statement : 
s-group: s-Group, 
sg-op: (x y), 
sg-id: 1, 
ss-eq: x ≡ y, 
ss-point: Point, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
ss-eq: x ≡ y, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
sg-op-inv, 
ss-sep_wf, 
s-group_subtype1, 
sg-op_wf, 
sg-id_wf, 
ss-point_wf, 
s-group_wf, 
sg-inv_wf, 
ss-eq_functionality, 
sg-op_functionality, 
ss-eq_weakening, 
ss-eq_inversion, 
sg-op-id, 
sg-assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
applyEquality, 
hypothesis, 
isect_memberEquality, 
voidElimination, 
independent_isectElimination, 
independent_functionElimination, 
productElimination
Latex:
\mforall{}[sg:s-Group].  \mforall{}[x:Point].    (1  x)  \mequiv{}  x
Date html generated:
2017_10_02-PM-03_24_54
Last ObjectModification:
2017_06_22-PM-05_23_39
Theory : constructive!algebra
Home
Index