Nuprl Lemma : sg-id-op

[sg:s-Group]. ∀[x:Point].  (1 x) ≡ x


Proof




Definitions occuring in Statement :  s-group: s-Group sg-op: (x y) sg-id: 1 ss-eq: x ≡ y ss-point: Point uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ss-eq: x ≡ y not: ¬A implies:  Q false: False subtype_rel: A ⊆B prop: all: x:A. B[x] uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  sg-op-inv ss-sep_wf s-group_subtype1 sg-op_wf sg-id_wf ss-point_wf s-group_wf sg-inv_wf ss-eq_functionality sg-op_functionality ss-eq_weakening ss-eq_inversion sg-op-id sg-assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination because_Cache applyEquality hypothesis isect_memberEquality voidElimination independent_isectElimination independent_functionElimination productElimination

Latex:
\mforall{}[sg:s-Group].  \mforall{}[x:Point].    (1  x)  \mequiv{}  x



Date html generated: 2017_10_02-PM-03_24_54
Last ObjectModification: 2017_06_22-PM-05_23_39

Theory : constructive!algebra


Home Index