Nuprl Lemma : sg-op-inv
∀[sg:s-Group]. ∀[x:Point].  (x x^-1) ≡ 1
Proof
Definitions occuring in Statement : 
s-group: s-Group
, 
sg-op: (x y)
, 
sg-inv: x^-1
, 
sg-id: 1
, 
ss-eq: x ≡ y
, 
ss-point: Point
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
s-group: s-Group
, 
ss-eq: x ≡ y
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
s-group-axioms: s-group-axioms(sg)
, 
and: P ∧ Q
Lemmas referenced : 
ss-sep_wf, 
s-group-structure_subtype1, 
s-group_subtype1, 
subtype_rel_transitivity, 
s-group_wf, 
s-group-structure_wf, 
separation-space_wf, 
sg-op_wf, 
sg-inv_wf, 
sg-id_wf, 
ss-point_wf, 
ss-eq_wf, 
squash_wf, 
sq_stable__uall, 
sq_stable__ss-eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
sqequalRule, 
isect_memberEquality, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
dependent_functionElimination, 
voidElimination, 
extract_by_obid, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination
Latex:
\mforall{}[sg:s-Group].  \mforall{}[x:Point].    (x  x\^{}-1)  \mequiv{}  1
Date html generated:
2017_10_02-PM-03_24_51
Last ObjectModification:
2017_06_23-AM-11_23_12
Theory : constructive!algebra
Home
Index