Nuprl Lemma : sg-op_functionality

[sg:s-GroupStructure]. ∀[x1,y1,x2,y2:Point].  ((x1 y1) ≡ (x2 y2)) supposing (x1 ≡ x2 and y1 ≡ y2)


Proof




Definitions occuring in Statement :  s-group-structure: s-GroupStructure sg-op: (x y) ss-eq: x ≡ y ss-point: Point uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a ss-eq: x ≡ y not: ¬A implies:  Q all: x:A. B[x] or: P ∨ Q false: False prop: subtype_rel: A ⊆B
Lemmas referenced :  sg-op-sep ss-sep_wf sg-op_wf s-group-structure_subtype1 ss-eq_wf ss-point_wf s-group-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis unionElimination voidElimination isectElimination applyEquality because_Cache sqequalRule lambdaEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[sg:s-GroupStructure].  \mforall{}[x1,y1,x2,y2:Point].    ((x1  y1)  \mequiv{}  (x2  y2))  supposing  (x1  \mequiv{}  x2  and  y1  \mequiv{}  y2)



Date html generated: 2017_10_02-PM-03_24_36
Last ObjectModification: 2017_06_23-AM-11_14_58

Theory : constructive!algebra


Home Index