Nuprl Lemma : sg-op_functionality
∀[sg:s-GroupStructure]. ∀[x1,y1,x2,y2:Point].  ((x1 y1) ≡ (x2 y2)) supposing (x1 ≡ x2 and y1 ≡ y2)
Proof
Definitions occuring in Statement : 
s-group-structure: s-GroupStructure, 
sg-op: (x y), 
ss-eq: x ≡ y, 
ss-point: Point, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
ss-eq: x ≡ y, 
not: ¬A, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
or: P ∨ Q, 
false: False, 
prop: ℙ, 
subtype_rel: A ⊆r B
Lemmas referenced : 
sg-op-sep, 
ss-sep_wf, 
sg-op_wf, 
s-group-structure_subtype1, 
ss-eq_wf, 
ss-point_wf, 
s-group-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
unionElimination, 
voidElimination, 
isectElimination, 
applyEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[sg:s-GroupStructure].  \mforall{}[x1,y1,x2,y2:Point].    ((x1  y1)  \mequiv{}  (x2  y2))  supposing  (x1  \mequiv{}  x2  and  y1  \mequiv{}  y2)
Date html generated:
2017_10_02-PM-03_24_36
Last ObjectModification:
2017_06_23-AM-11_14_58
Theory : constructive!algebra
Home
Index