Nuprl Lemma : sg-op-sep
∀sg:s-GroupStructure. ∀x1,y1,x2,y2:Point.  ((x1 y1) # (x2 y2) 
⇒ (x1 # x2 ∨ y1 # y2))
Proof
Definitions occuring in Statement : 
s-group-structure: s-GroupStructure
, 
sg-op: (x y)
, 
ss-sep: x # y
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
s-group-structure: s-GroupStructure
, 
record+: record+, 
member: t ∈ T
, 
record-select: r.x
, 
subtype_rel: A ⊆r B
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
so_apply: x[s]
, 
sg-op: (x y)
Lemmas referenced : 
subtype_rel_self, 
ss-point_wf, 
all_wf, 
ss-sep_wf, 
or_wf, 
s-group-structure_subtype1, 
sg-op_wf, 
s-group-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
dependentIntersectionElimination, 
sqequalRule, 
dependentIntersectionEqElimination, 
thin, 
cut, 
hypothesis, 
applyEquality, 
tokenEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
functionEquality, 
lambdaEquality, 
because_Cache, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}sg:s-GroupStructure.  \mforall{}x1,y1,x2,y2:Point.    ((x1  y1)  \#  (x2  y2)  {}\mRightarrow{}  (x1  \#  x2  \mvee{}  y1  \#  y2))
Date html generated:
2017_10_02-PM-03_24_34
Last ObjectModification:
2017_06_23-AM-11_13_49
Theory : constructive!algebra
Home
Index