Nuprl Lemma : sg-op-sep

sg:s-GroupStructure. ∀x1,y1,x2,y2:Point.  ((x1 y1) (x2 y2)  (x1 x2 ∨ y1 y2))


Proof




Definitions occuring in Statement :  s-group-structure: s-GroupStructure sg-op: (x y) ss-sep: y ss-point: Point all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q s-group-structure: s-GroupStructure record+: record+ member: t ∈ T record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt uall: [x:A]. B[x] so_lambda: λ2x.t[x] prop: or: P ∨ Q so_apply: x[s] sg-op: (x y)
Lemmas referenced :  subtype_rel_self ss-point_wf all_wf ss-sep_wf or_wf s-group-structure_subtype1 sg-op_wf s-group-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution dependentIntersectionElimination sqequalRule dependentIntersectionEqElimination thin cut hypothesis applyEquality tokenEquality introduction extract_by_obid isectElimination functionEquality lambdaEquality because_Cache functionExtensionality equalityTransitivity equalitySymmetry hypothesisEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}sg:s-GroupStructure.  \mforall{}x1,y1,x2,y2:Point.    ((x1  y1)  \#  (x2  y2)  {}\mRightarrow{}  (x1  \#  x2  \mvee{}  y1  \#  y2))



Date html generated: 2017_10_02-PM-03_24_34
Last ObjectModification: 2017_06_23-AM-11_13_49

Theory : constructive!algebra


Home Index