Nuprl Lemma : sg-op-id

[sg:s-Group]. ∀[x:Point].  (x 1) ≡ x


Proof




Definitions occuring in Statement :  s-group: s-Group sg-op: (x y) sg-id: 1 ss-eq: x ≡ y ss-point: Point uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T s-group: s-Group ss-eq: x ≡ y not: ¬A implies:  Q false: False subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) squash: T s-group-axioms: s-group-axioms(sg) and: P ∧ Q
Lemmas referenced :  ss-sep_wf s-group-structure_subtype1 s-group_subtype1 subtype_rel_transitivity s-group_wf s-group-structure_wf separation-space_wf sg-op_wf sg-id_wf ss-point_wf ss-eq_wf squash_wf sq_stable__uall sq_stable__ss-eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename sqequalRule isect_memberEquality isectElimination hypothesisEquality lambdaEquality dependent_functionElimination voidElimination extract_by_obid applyEquality hypothesis instantiate independent_isectElimination because_Cache independent_functionElimination imageMemberEquality baseClosed imageElimination productElimination

Latex:
\mforall{}[sg:s-Group].  \mforall{}[x:Point].    (x  1)  \mequiv{}  x



Date html generated: 2017_10_02-PM-03_24_49
Last ObjectModification: 2017_06_23-AM-11_22_29

Theory : constructive!algebra


Home Index