Nuprl Lemma : sg-inv-op

[sg:s-Group]. ∀[x:Point].  (x^-1 x) ≡ 1


Proof




Definitions occuring in Statement :  s-group: s-Group sg-op: (x y) sg-inv: x^-1 sg-id: 1 ss-eq: x ≡ y ss-point: Point uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ss-eq: x ≡ y not: ¬A implies:  Q false: False subtype_rel: A ⊆B prop: all: x:A. B[x] uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  sg-op-inv ss-sep_wf s-group_subtype1 sg-op_wf sg-inv_wf sg-id_wf ss-point_wf s-group_wf ss-eq_weakening ss-eq_functionality sg-op_functionality sg-id-op ss-eq_inversion ss-eq_transitivity sg-assoc equal_wf ss-eq_wf uiff_transitivity sg-op-id
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination because_Cache applyEquality hypothesis isect_memberEquality voidElimination independent_functionElimination independent_isectElimination productElimination lambdaFormation equalityTransitivity equalitySymmetry

Latex:
\mforall{}[sg:s-Group].  \mforall{}[x:Point].    (x\^{}-1  x)  \mequiv{}  1



Date html generated: 2017_10_02-PM-03_24_56
Last ObjectModification: 2017_06_22-PM-05_54_42

Theory : constructive!algebra


Home Index