Nuprl Lemma : reverse-cons

[as,a:Top].  (rev([a as]) rev(as) [a])


Proof




Definitions occuring in Statement :  reverse: rev(as) append: as bs cons: [a b] nil: [] uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T reverse: rev(as) all: x:A. B[x] top: Top append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  rev_app_cons_lemma rev-append-property-top list_ind_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination hypothesisEquality sqequalAxiom because_Cache

Latex:
\mforall{}[as,a:Top].    (rev([a  /  as])  \msim{}  rev(as)  @  [a])



Date html generated: 2016_05_14-AM-06_54_24
Last ObjectModification: 2015_12_26-PM-00_19_24

Theory : list_0


Home Index