Nuprl Lemma : sg-inv-of-op

[sg:s-Group]. ∀[x,y:Point].  (x y)^-1 ≡ (y^-1 x^-1)


Proof




Definitions occuring in Statement :  s-group: s-Group sg-op: (x y) sg-inv: x^-1 ss-eq: x ≡ y ss-point: Point uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a ss-eq: x ≡ y not: ¬A implies:  Q false: False subtype_rel: A ⊆B prop: all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  sg-inv-unique sg-op_wf sg-inv_wf ss-sep_wf s-group_subtype1 ss-point_wf s-group_wf sg-id_wf ss-eq_functionality sg-assoc ss-eq_weakening sg-op_functionality ss-eq_inversion ss-eq_wf uiff_transitivity sg-op-inv ss-eq_transitivity sg-op-id
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination sqequalRule lambdaEquality dependent_functionElimination because_Cache applyEquality isect_memberEquality voidElimination independent_functionElimination productElimination

Latex:
\mforall{}[sg:s-Group].  \mforall{}[x,y:Point].    (x  y)\^{}-1  \mequiv{}  (y\^{}-1  x\^{}-1)



Date html generated: 2017_10_02-PM-03_25_04
Last ObjectModification: 2017_06_22-PM-06_30_23

Theory : constructive!algebra


Home Index