Nuprl Lemma : sg-inv_functionality

[sg:s-GroupStructure]. ∀[x1,x2:Point].  x1^-1 ≡ x2^-1 supposing x1 ≡ x2


Proof




Definitions occuring in Statement :  s-group-structure: s-GroupStructure sg-inv: x^-1 ss-eq: x ≡ y ss-point: Point uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a ss-eq: x ≡ y not: ¬A implies:  Q all: x:A. B[x] false: False prop: subtype_rel: A ⊆B
Lemmas referenced :  sg-inv-sep ss-sep_wf sg-inv_wf s-group-structure_subtype1 ss-eq_wf ss-point_wf s-group-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lambdaFormation independent_functionElimination thin extract_by_obid dependent_functionElimination hypothesisEquality hypothesis voidElimination isectElimination applyEquality because_Cache sqequalRule lambdaEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[sg:s-GroupStructure].  \mforall{}[x1,x2:Point].    x1\^{}-1  \mequiv{}  x2\^{}-1  supposing  x1  \mequiv{}  x2



Date html generated: 2017_10_02-PM-03_24_35
Last ObjectModification: 2017_06_23-AM-11_14_24

Theory : constructive!algebra


Home Index