Nuprl Lemma : mk-s-subgroup_wf

[sg:s-Group]. ∀[P:Point ⟶ ℙ].  mk-s-subgroup(sg;x.P[x]) ∈ s-Group supposing sg-subgroup(sg;x.P[x])


Proof




Definitions occuring in Statement :  mk-s-subgroup: mk-s-subgroup(sg;x.P[x]) sg-subgroup: sg-subgroup(sg;x.P[x]) s-group: s-Group ss-point: Point uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sg-subgroup: sg-subgroup(sg;x.P[x]) and: P ∧ Q mk-s-subgroup: mk-s-subgroup(sg;x.P[x]) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] top: Top s-group: s-Group prop: all: x:A. B[x] implies:  Q guard: {T} cand: c∧ B s-group-structure: s-GroupStructure record+: record+ record-select: r.x eq_atom: =a y ifthenelse: if then else fi  btrue: tt sg-inv: x^-1 sg-op: (x y) or: P ∨ Q
Lemmas referenced :  mk-s-group_wf set-ss_wf ss-point_wf set-ss-point sg-id_wf sg-inv_wf sg-subgroup_wf s-group-structure_subtype1 s-group_subtype1 subtype_rel_transitivity s-group_wf s-group-structure_wf separation-space_wf sg-op_wf sg-assoc set_wf sg-op-id sg-op-inv all_wf ss-eq_wf subtype_rel_self subtype_rel_dep_function ss-sep_wf or_wf set-ss-eq set-ss-sep
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule lambdaEquality functionExtensionality isect_memberEquality voidElimination voidEquality dependent_set_memberEquality setElimination rename universeEquality dependent_functionElimination independent_functionElimination setEquality axiomEquality equalityTransitivity equalitySymmetry instantiate independent_isectElimination functionEquality cumulativity lambdaFormation independent_pairFormation productEquality dependentIntersectionElimination dependentIntersectionEqElimination

Latex:
\mforall{}[sg:s-Group].  \mforall{}[P:Point  {}\mrightarrow{}  \mBbbP{}].    mk-s-subgroup(sg;x.P[x])  \mmember{}  s-Group  supposing  sg-subgroup(sg;x.P[x])



Date html generated: 2017_10_02-PM-03_25_13
Last ObjectModification: 2017_07_28-AM-06_57_12

Theory : constructive!algebra


Home Index