Nuprl Lemma : mk-s-subgroup_wf
∀[sg:s-Group]. ∀[P:Point ⟶ ℙ].  mk-s-subgroup(sg;x.P[x]) ∈ s-Group supposing sg-subgroup(sg;x.P[x])
Proof
Definitions occuring in Statement : 
mk-s-subgroup: mk-s-subgroup(sg;x.P[x])
, 
sg-subgroup: sg-subgroup(sg;x.P[x])
, 
s-group: s-Group
, 
ss-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sg-subgroup: sg-subgroup(sg;x.P[x])
, 
and: P ∧ Q
, 
mk-s-subgroup: mk-s-subgroup(sg;x.P[x])
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
top: Top
, 
s-group: s-Group
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
cand: A c∧ B
, 
s-group-structure: s-GroupStructure
, 
record+: record+, 
record-select: r.x
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
sg-inv: x^-1
, 
sg-op: (x y)
, 
or: P ∨ Q
Lemmas referenced : 
mk-s-group_wf, 
set-ss_wf, 
ss-point_wf, 
set-ss-point, 
sg-id_wf, 
sg-inv_wf, 
sg-subgroup_wf, 
s-group-structure_subtype1, 
s-group_subtype1, 
subtype_rel_transitivity, 
s-group_wf, 
s-group-structure_wf, 
separation-space_wf, 
sg-op_wf, 
sg-assoc, 
set_wf, 
sg-op-id, 
sg-op-inv, 
all_wf, 
ss-eq_wf, 
subtype_rel_self, 
subtype_rel_dep_function, 
ss-sep_wf, 
or_wf, 
set-ss-eq, 
set-ss-sep
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
functionExtensionality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
setElimination, 
rename, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination, 
setEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
independent_isectElimination, 
functionEquality, 
cumulativity, 
lambdaFormation, 
independent_pairFormation, 
productEquality, 
dependentIntersectionElimination, 
dependentIntersectionEqElimination
Latex:
\mforall{}[sg:s-Group].  \mforall{}[P:Point  {}\mrightarrow{}  \mBbbP{}].    mk-s-subgroup(sg;x.P[x])  \mmember{}  s-Group  supposing  sg-subgroup(sg;x.P[x])
Date html generated:
2017_10_02-PM-03_25_13
Last ObjectModification:
2017_07_28-AM-06_57_12
Theory : constructive!algebra
Home
Index