Nuprl Lemma : sg-subgroup_wf

[sg:s-Group]. ∀[P:Point ⟶ ℙ].  (sg-subgroup(sg;x.P[x]) ∈ ℙ)


Proof




Definitions occuring in Statement :  sg-subgroup: sg-subgroup(sg;x.P[x]) s-group: s-Group ss-point: Point uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] and: P ∧ Q prop: sg-subgroup: sg-subgroup(sg;x.P[x]) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  s-group_wf sg-op_wf sg-inv_wf all_wf sg-id_wf s-group_subtype1 ss-point_wf
Rules used in proof :  isect_memberEquality universeEquality cumulativity equalitySymmetry equalityTransitivity axiomEquality functionEquality lambdaEquality because_Cache hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid hypothesisEquality functionExtensionality applyEquality productEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[sg:s-Group].  \mforall{}[P:Point  {}\mrightarrow{}  \mBbbP{}].    (sg-subgroup(sg;x.P[x])  \mmember{}  \mBbbP{})



Date html generated: 2016_11_08-AM-09_12_30
Last ObjectModification: 2016_11_03-PM-00_22_14

Theory : inner!product!spaces


Home Index