Nuprl Lemma : sg-subgroup_wf
∀[sg:s-Group]. ∀[P:Point ⟶ ℙ].  (sg-subgroup(sg;x.P[x]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
sg-subgroup: sg-subgroup(sg;x.P[x])
, 
s-group: s-Group
, 
ss-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
prop: ℙ
, 
sg-subgroup: sg-subgroup(sg;x.P[x])
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
s-group_wf, 
sg-op_wf, 
sg-inv_wf, 
all_wf, 
sg-id_wf, 
s-group_subtype1, 
ss-point_wf
Rules used in proof : 
isect_memberEquality, 
universeEquality, 
cumulativity, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
functionEquality, 
lambdaEquality, 
because_Cache, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
productEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[sg:s-Group].  \mforall{}[P:Point  {}\mrightarrow{}  \mBbbP{}].    (sg-subgroup(sg;x.P[x])  \mmember{}  \mBbbP{})
Date html generated:
2016_11_08-AM-09_12_30
Last ObjectModification:
2016_11_03-PM-00_22_14
Theory : inner!product!spaces
Home
Index