Nuprl Lemma : sg-op_wf

[sg:s-Group]. ∀[x,y:Point].  ((x y) ∈ Point)


Proof




Definitions occuring in Statement :  sg-op: (x y) s-group: s-Group ss-point: Point uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  sg-op: (x y) or: P ∨ Q guard: {T} implies:  Q prop: all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] and: P ∧ Q btrue: tt ifthenelse: if then else fi  eq_atom: =a y subtype_rel: A ⊆B record-select: r.x record+: record+ s-group: s-Group member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  s-group_wf s-group_subtype1 or_wf ss-sep_wf ss-eq_wf all_wf ss-point_wf subtype_rel_self
Rules used in proof :  isect_memberEquality axiomEquality rename setElimination equalitySymmetry equalityTransitivity hypothesisEquality functionExtensionality lambdaEquality productEquality because_Cache setEquality functionEquality isectElimination extract_by_obid tokenEquality applyEquality hypothesis thin dependentIntersectionEqElimination sqequalRule dependentIntersectionElimination sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[sg:s-Group].  \mforall{}[x,y:Point].    ((x  y)  \mmember{}  Point)



Date html generated: 2016_11_08-AM-09_11_34
Last ObjectModification: 2016_11_02-PM-06_54_42

Theory : inner!product!spaces


Home Index