Nuprl Lemma : s-group_subtype1

s-Group ⊆SeparationSpace


Proof




Definitions occuring in Statement :  s-group: s-Group separation-space: SeparationSpace subtype_rel: A ⊆B
Definitions unfolded in proof :  or: P ∨ Q guard: {T} implies:  Q prop: all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] and: P ∧ Q uall: [x:A]. B[x] btrue: tt ifthenelse: if then else fi  eq_atom: =a y record-select: r.x record+: record+ s-group: s-Group member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  s-group_wf or_wf ss-sep_wf ss-eq_wf all_wf ss-point_wf subtype_rel_self
Rules used in proof :  rename setElimination equalitySymmetry equalityTransitivity hypothesisEquality functionExtensionality productEquality because_Cache setEquality functionEquality isectElimination extract_by_obid introduction tokenEquality applyEquality hypothesis cut thin dependentIntersectionEqElimination sqequalRule dependentIntersectionElimination sqequalHypSubstitution lambdaEquality sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
s-Group  \msubseteq{}r  SeparationSpace



Date html generated: 2016_11_08-AM-09_11_24
Last ObjectModification: 2016_11_02-PM-06_50_57

Theory : inner!product!spaces


Home Index