Nuprl Lemma : s-group_subtype1
s-Group ⊆r SeparationSpace
Proof
Definitions occuring in Statement : 
s-group: s-Group
, 
separation-space: SeparationSpace
, 
subtype_rel: A ⊆r B
Definitions unfolded in proof : 
or: P ∨ Q
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
record-select: r.x
, 
record+: record+, 
s-group: s-Group
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
s-group_wf, 
or_wf, 
ss-sep_wf, 
ss-eq_wf, 
all_wf, 
ss-point_wf, 
subtype_rel_self
Rules used in proof : 
rename, 
setElimination, 
equalitySymmetry, 
equalityTransitivity, 
hypothesisEquality, 
functionExtensionality, 
productEquality, 
because_Cache, 
setEquality, 
functionEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
tokenEquality, 
applyEquality, 
hypothesis, 
cut, 
thin, 
dependentIntersectionEqElimination, 
sqequalRule, 
dependentIntersectionElimination, 
sqequalHypSubstitution, 
lambdaEquality, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
s-Group  \msubseteq{}r  SeparationSpace
Date html generated:
2016_11_08-AM-09_11_24
Last ObjectModification:
2016_11_02-PM-06_50_57
Theory : inner!product!spaces
Home
Index