Nuprl Lemma : s-group_wf

s-Group ∈ 𝕌'


Proof




Definitions occuring in Statement :  s-group: s-Group member: t ∈ T universe: Type
Definitions unfolded in proof :  or: P ∨ Q guard: {T} implies:  Q all: x:A. B[x] prop: and: P ∧ Q btrue: tt ifthenelse: if then else fi  eq_atom: =a y subtype_rel: A ⊆B record-select: r.x record+: record+ so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] member: t ∈ T s-group: s-Group
Lemmas referenced :  or_wf ss-sep_wf ss-eq_wf all_wf subtype_rel_self ss-point_wf record+_wf separation-space_wf
Rules used in proof :  rename setElimination functionExtensionality productEquality because_Cache universeEquality setEquality dependentIntersectionEqElimination functionEquality applyEquality dependentIntersectionElimination tokenEquality hypothesisEquality cumulativity lambdaEquality sqequalRule equalitySymmetry equalityTransitivity thin isectElimination sqequalHypSubstitution hypothesis extract_by_obid introduction cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
s-Group  \mmember{}  \mBbbU{}'



Date html generated: 2016_11_08-AM-09_11_22
Last ObjectModification: 2016_11_02-AM-10_18_17

Theory : inner!product!spaces


Home Index