Nuprl Lemma : s-group_wf
s-Group ∈ 𝕌'
Proof
Definitions occuring in Statement : 
s-group: s-Group, 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
or: P ∨ Q, 
guard: {T}, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
prop: ℙ, 
and: P ∧ Q, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
subtype_rel: A ⊆r B, 
record-select: r.x, 
record+: record+, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
s-group: s-Group
Lemmas referenced : 
or_wf, 
ss-sep_wf, 
ss-eq_wf, 
all_wf, 
subtype_rel_self, 
ss-point_wf, 
record+_wf, 
separation-space_wf
Rules used in proof : 
rename, 
setElimination, 
functionExtensionality, 
productEquality, 
because_Cache, 
universeEquality, 
setEquality, 
dependentIntersectionEqElimination, 
functionEquality, 
applyEquality, 
dependentIntersectionElimination, 
tokenEquality, 
hypothesisEquality, 
cumulativity, 
lambdaEquality, 
sqequalRule, 
equalitySymmetry, 
equalityTransitivity, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
s-Group  \mmember{}  \mBbbU{}'
Date html generated:
2016_11_08-AM-09_11_22
Last ObjectModification:
2016_11_02-AM-10_18_17
Theory : inner!product!spaces
Home
Index