Step
*
of Lemma
mk-s-subgroup_wf
∀[sg:s-Group]. ∀[P:Point ⟶ ℙ]. mk-s-subgroup(sg;x.P[x]) ∈ s-Group supposing sg-subgroup(sg;x.P[x])
BY
{ ((Auto THEN D -1 THEN ExRepD)
THEN Unfold `mk-s-subgroup` 0
THEN MemCD
THEN (All (RWO "set-ss-point set-ss-eq set-ss-sep") THENA Auto)
THEN ((Reduce 0
THEN (Assert sg ∈ s-Group BY
Auto)
THEN RepeatFor 2 ((D 1 THENA Auto))
THEN All (Folds ``sg-op sg-inv``)
THEN DoSubsume
THEN Try (Trivial)
THEN Unfold `all` 0
THEN Auto)
ORELSE (MemTypeCD THEN Reduce 0 THEN Auto)
ORELSE Auto)) }
Latex:
Latex:
\mforall{}[sg:s-Group]. \mforall{}[P:Point {}\mrightarrow{} \mBbbP{}]. mk-s-subgroup(sg;x.P[x]) \mmember{} s-Group supposing sg-subgroup(sg;x.P[x])
By
Latex:
((Auto THEN D -1 THEN ExRepD)
THEN Unfold `mk-s-subgroup` 0
THEN MemCD
THEN (All (RWO "set-ss-point set-ss-eq set-ss-sep") THENA Auto)
THEN ((Reduce 0
THEN (Assert sg \mmember{} s-Group BY
Auto)
THEN RepeatFor 2 ((D 1 THENA Auto))
THEN All (Folds ``sg-op sg-inv``)
THEN DoSubsume
THEN Try (Trivial)
THEN Unfold `all` 0
THEN Auto)
ORELSE (MemTypeCD THEN Reduce 0 THEN Auto)
ORELSE Auto))
Home
Index