Nuprl Lemma : sg-inv-id

[sg:s-Group]. 1^-1 ≡ 1


Proof




Definitions occuring in Statement :  s-group: s-Group sg-inv: x^-1 sg-id: 1 ss-eq: x ≡ y uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ss-eq: x ≡ y not: ¬A implies:  Q false: False subtype_rel: A ⊆B prop: uimplies: supposing a
Lemmas referenced :  ss-sep_wf s-group_subtype1 sg-inv_wf sg-id_wf s-group_wf sg-op-id sg-inv-unique
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality voidElimination extract_by_obid isectElimination applyEquality hypothesis independent_isectElimination

Latex:
\mforall{}[sg:s-Group].  1\^{}-1  \mequiv{}  1



Date html generated: 2017_10_02-PM-03_25_02
Last ObjectModification: 2017_06_22-PM-06_00_40

Theory : constructive!algebra


Home Index