Nuprl Lemma : sg-inv-inv

[sg:s-Group]. ∀[x:Point].  x^-1^-1 ≡ x


Proof




Definitions occuring in Statement :  s-group: s-Group sg-inv: x^-1 ss-eq: x ≡ y ss-point: Point uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a ss-eq: x ≡ y not: ¬A implies:  Q false: False subtype_rel: A ⊆B prop:
Lemmas referenced :  sg-inv-unique sg-inv_wf sg-inv-op ss-sep_wf s-group_subtype1 ss-point_wf s-group_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination sqequalRule lambdaEquality dependent_functionElimination because_Cache applyEquality isect_memberEquality voidElimination

Latex:
\mforall{}[sg:s-Group].  \mforall{}[x:Point].    x\^{}-1\^{}-1  \mequiv{}  x



Date html generated: 2017_10_02-PM-03_25_01
Last ObjectModification: 2017_06_22-PM-05_59_33

Theory : constructive!algebra


Home Index