Step
*
1
of Lemma
permutation-s-group_wf
1. [rv] : SeparationSpace
2. <λx.x, λx.x> ∈ Point(permutation-ss(rv))
3. λfg.let f,g = fg
in <g, f> ∈ Point(permutation-ss(rv)) ⟶ Point(permutation-ss(rv))
⊢ ∀[sepw:∀x:Point(rv). ∀y:{y:Point(rv)| x # y} . x # y]. (Perm(rv) ∈ s-Group)
BY
{ (Assert λfg,fg'. let f,g = fg in let f',g' = fg' in <f o f', g' o g> ∈ Point(permutation-ss(rv))
⟶ Point(permutation-ss(rv))
⟶ Point(permutation-ss(rv)) BY
(RepeatFor 2 (((MemCD THENA Auto)
THEN (RWO "permutation-ss-point" (-1) THENA Auto)
THEN D -1
THEN D -2
THEN All Reduce))
THEN (RWO "permutation-ss-point" 0 THENA Auto)
THEN MemTypeCD
THEN Reduce 0
THEN Auto
THEN EAuto 1)) }
1
.....aux.....
1. rv : SeparationSpace
2. <λx.x, λx.x> ∈ Point(permutation-ss(rv))
3. λfg.let f,g = fg
in <g, f> ∈ Point(permutation-ss(rv)) ⟶ Point(permutation-ss(rv))
4. f1 : Point(rv) ⟶ Point(rv)
5. f2 : Point(rv) ⟶ Point(rv)
6. ∀x:Point(rv). f1 (f2 x) ≡ x
7. ∀x:Point(rv). f2 (f1 x) ≡ x
8. ∀x,y:Point(rv). (f1 x # f1 y
⇒ x # y)
9. ∀x,y:Point(rv). (f2 x # f2 y
⇒ x # y)
10. f3 : Point(rv) ⟶ Point(rv)
11. f4 : Point(rv) ⟶ Point(rv)
12. ∀x:Point(rv). f3 (f4 x) ≡ x
13. ∀x:Point(rv). f4 (f3 x) ≡ x
14. ∀x,y:Point(rv). (f3 x # f3 y
⇒ x # y)
15. ∀x,y:Point(rv). (f4 x # f4 y
⇒ x # y)
16. x : Point(rv)
⊢ f1 (f3 (f4 (f2 x))) ≡ x
2
.....aux.....
1. rv : SeparationSpace
2. <λx.x, λx.x> ∈ Point(permutation-ss(rv))
3. λfg.let f,g = fg
in <g, f> ∈ Point(permutation-ss(rv)) ⟶ Point(permutation-ss(rv))
4. f1 : Point(rv) ⟶ Point(rv)
5. f2 : Point(rv) ⟶ Point(rv)
6. ∀x:Point(rv). f1 (f2 x) ≡ x
7. ∀x:Point(rv). f2 (f1 x) ≡ x
8. ∀x,y:Point(rv). (f1 x # f1 y
⇒ x # y)
9. ∀x,y:Point(rv). (f2 x # f2 y
⇒ x # y)
10. f3 : Point(rv) ⟶ Point(rv)
11. f4 : Point(rv) ⟶ Point(rv)
12. ∀x:Point(rv). f3 (f4 x) ≡ x
13. ∀x:Point(rv). f4 (f3 x) ≡ x
14. ∀x,y:Point(rv). (f3 x # f3 y
⇒ x # y)
15. ∀x,y:Point(rv). (f4 x # f4 y
⇒ x # y)
16. ∀x:Point(rv). f1 (f3 (f4 (f2 x))) ≡ x
17. x : Point(rv)
⊢ f4 (f2 (f1 (f3 x))) ≡ x
3
1. [rv] : SeparationSpace
2. <λx.x, λx.x> ∈ Point(permutation-ss(rv))
3. λfg.let f,g = fg
in <g, f> ∈ Point(permutation-ss(rv)) ⟶ Point(permutation-ss(rv))
4. λfg,fg'. let f,g = fg in let f',g' = fg' in <f o f', g' o g> ∈ Point(permutation-ss(rv))
⟶ Point(permutation-ss(rv))
⟶ Point(permutation-ss(rv))
⊢ ∀[sepw:∀x:Point(rv). ∀y:{y:Point(rv)| x # y} . x # y]. (Perm(rv) ∈ s-Group)
Latex:
Latex:
1. [rv] : SeparationSpace
2. <\mlambda{}x.x, \mlambda{}x.x> \mmember{} Point(permutation-ss(rv))
3. \mlambda{}fg.let f,g = fg
in <g, f> \mmember{} Point(permutation-ss(rv)) {}\mrightarrow{} Point(permutation-ss(rv))
\mvdash{} \mforall{}[sepw:\mforall{}x:Point(rv). \mforall{}y:\{y:Point(rv)| x \# y\} . x \# y]. (Perm(rv) \mmember{} s-Group)
By
Latex:
(Assert \mlambda{}fg,fg'. let f,g = fg in let f',g' = fg' in <f o f', g' o g> \mmember{} Point(permutation-ss(rv))
{}\mrightarrow{} Point(permutation-ss(rv))
{}\mrightarrow{} Point(permutation-ss(rv)) BY
(RepeatFor 2 (((MemCD THENA Auto)
THEN (RWO "permutation-ss-point" (-1) THENA Auto)
THEN D -1
THEN D -2
THEN All Reduce))
THEN (RWO "permutation-ss-point" 0 THENA Auto)
THEN MemTypeCD
THEN Reduce 0
THEN Auto
THEN EAuto 1))
Home
Index