Nuprl Lemma : permutation-s-group_wf

[rv:SeparationSpace]. ∀[sepw:∀x:Point(rv). ∀y:{y:Point(rv)| y} .  y].  (Perm(rv) ∈ s-Group)


Proof




Definitions occuring in Statement :  permutation-s-group: Perm(rv) s-group: s-Group ss-sep: y ss-point: Point(ss) separation-space: SeparationSpace uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top and: P ∧ Q cand: c∧ B all: x:A. B[x] implies:  Q prop: compose: g guard: {T} false: False not: ¬A ss-eq: x ≡ y permutation-s-group: Perm(rv) uiff: uiff(P;Q) uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] permutation-s-group-sep-or ss-sep-symmetry ss-sep-irrefl ss-sep-or or: P ∨ Q subtype_rel: A ⊆B fun-sep: fun-sep(ss;A;f;g) exists: x:A. B[x]
Lemmas referenced :  permutation-ss-point istype-void ss-point_wf ss-eq_weakening ss-sep_wf ss-eq_wf separation-space_wf compose_wf ss-eq_transitivity mk-s-group_wf permutation-ss_wf permutation-ss-eq-iff all_wf fun-sep_wf permutation-ss-sep permutation-s-group-sep-or subtype_rel_self subtype_rel_function exists_wf or_wf ss-sep-symmetry ss-sep-irrefl ss-sep-or
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality_alt voidElimination hypothesis dependent_set_memberEquality_alt independent_pairEquality lambdaEquality_alt hypothesisEquality universeIsType because_Cache lambdaFormation_alt dependent_functionElimination independent_functionElimination independent_pairFormation productElimination productIsType functionIsType applyEquality setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry axiomEquality setIsType dependent_set_memberEquality lambdaFormation isect_memberEquality voidEquality functionExtensionality independent_isectElimination lambdaEquality productEquality unionEquality equalityIsType1 functionEquality instantiate setEquality unionElimination inrEquality dependent_pairEquality inlEquality

Latex:
\mforall{}[rv:SeparationSpace].  \mforall{}[sepw:\mforall{}x:Point(rv).  \mforall{}y:\{y:Point(rv)|  x  \#  y\}  .    x  \#  y].    (Perm(rv)  \mmember{}  s-Group)



Date html generated: 2019_10_31-AM-07_27_55
Last ObjectModification: 2019_09_19-PM-04_31_01

Theory : constructive!algebra


Home Index