Nuprl Lemma : permutation-s-group_wf
∀[rv:SeparationSpace]. ∀[sepw:∀x:Point(rv). ∀y:{y:Point(rv)| x # y} .  x # y].  (Perm(rv) ∈ s-Group)
Proof
Definitions occuring in Statement : 
permutation-s-group: Perm(rv)
, 
s-group: s-Group
, 
ss-sep: x # y
, 
ss-point: Point(ss)
, 
separation-space: SeparationSpace
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
compose: f o g
, 
guard: {T}
, 
false: False
, 
not: ¬A
, 
ss-eq: x ≡ y
, 
permutation-s-group: Perm(rv)
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
permutation-s-group-sep-or, 
ss-sep-symmetry, 
ss-sep-irrefl, 
ss-sep-or, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
fun-sep: fun-sep(ss;A;f;g)
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
permutation-ss-point, 
istype-void, 
ss-point_wf, 
ss-eq_weakening, 
ss-sep_wf, 
ss-eq_wf, 
separation-space_wf, 
compose_wf, 
ss-eq_transitivity, 
mk-s-group_wf, 
permutation-ss_wf, 
permutation-ss-eq-iff, 
all_wf, 
fun-sep_wf, 
permutation-ss-sep, 
permutation-s-group-sep-or, 
subtype_rel_self, 
subtype_rel_function, 
exists_wf, 
or_wf, 
ss-sep-symmetry, 
ss-sep-irrefl, 
ss-sep-or
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
dependent_set_memberEquality_alt, 
independent_pairEquality, 
lambdaEquality_alt, 
hypothesisEquality, 
universeIsType, 
because_Cache, 
lambdaFormation_alt, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
productElimination, 
productIsType, 
functionIsType, 
applyEquality, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
setIsType, 
dependent_set_memberEquality, 
lambdaFormation, 
isect_memberEquality, 
voidEquality, 
functionExtensionality, 
independent_isectElimination, 
lambdaEquality, 
productEquality, 
unionEquality, 
equalityIsType1, 
functionEquality, 
instantiate, 
setEquality, 
unionElimination, 
inrEquality, 
dependent_pairEquality, 
inlEquality
Latex:
\mforall{}[rv:SeparationSpace].  \mforall{}[sepw:\mforall{}x:Point(rv).  \mforall{}y:\{y:Point(rv)|  x  \#  y\}  .    x  \#  y].    (Perm(rv)  \mmember{}  s-Group)
Date html generated:
2019_10_31-AM-07_27_55
Last ObjectModification:
2019_09_19-PM-04_31_01
Theory : constructive!algebra
Home
Index