Nuprl Lemma : permutation-ss-sep
∀[rv,f,g,f',g':Top].  (<f, g> # <f', g'> ~ fun-sep(rv;Point;f;f') ∨ fun-sep(rv;Point;g;g'))
Proof
Definitions occuring in Statement : 
permutation-ss: permutation-ss(ss)
, 
fun-sep: fun-sep(ss;A;f;g)
, 
ss-sep: x # y
, 
ss-point: Point
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
or: P ∨ Q
, 
pair: <a, b>
, 
sqequal: s ~ t
Definitions unfolded in proof : 
pi2: snd(t)
, 
pi1: fst(t)
, 
prod-ss: ss1 × ss2
, 
fun-ss: A ⟶ ss
, 
btrue: tt
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
top: Top
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
mk-ss: mk-ss, 
set-ss: set-ss(ss;x.P[x])
, 
ss-sep: x # y
, 
permutation-ss: permutation-ss(ss)
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
top_wf, 
rec_select_update_lemma
Rules used in proof : 
because_Cache, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
sqequalRule, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[rv,f,g,f',g':Top].    (<f,  g>  \#  <f',  g'>  \msim{}  fun-sep(rv;Point;f;f')  \mvee{}  fun-sep(rv;Point;g;g'))
Date html generated:
2016_11_08-AM-09_12_45
Last ObjectModification:
2016_11_03-AM-10_29_28
Theory : inner!product!spaces
Home
Index