Nuprl Lemma : ss-sep-or
∀ss:SeparationSpace. ∀x,y,z:Point.  (x # y 
⇒ (x # z ∨ y # z))
Proof
Definitions occuring in Statement : 
ss-sep: x # y
, 
ss-point: Point
, 
separation-space: SeparationSpace
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
ss-sep: x # y
, 
ss-point: Point
, 
separation-space: SeparationSpace
, 
record+: record+, 
record-select: r.x
, 
subtype_rel: A ⊆r B
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Lemmas referenced : 
subtype_rel_self, 
all_wf, 
not_wf, 
or_wf, 
separation-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
dependentIntersectionElimination, 
dependentIntersectionEqElimination, 
thin, 
cut, 
hypothesis, 
applyEquality, 
tokenEquality, 
instantiate, 
extract_by_obid, 
isectElimination, 
universeEquality, 
setEquality, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
functionExtensionality, 
setElimination, 
rename
Latex:
\mforall{}ss:SeparationSpace.  \mforall{}x,y,z:Point.    (x  \#  y  {}\mRightarrow{}  (x  \#  z  \mvee{}  y  \#  z))
Date html generated:
2017_10_02-PM-03_24_06
Last ObjectModification:
2017_06_22-PM-06_55_26
Theory : constructive!algebra
Home
Index