Nuprl Lemma : ss-sep-or

ss:SeparationSpace. ∀x,y,z:Point.  (x  (x z ∨ z))


Proof




Definitions occuring in Statement :  ss-sep: y ss-point: Point separation-space: SeparationSpace all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T ss-sep: y ss-point: Point separation-space: SeparationSpace record+: record+ record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt uall: [x:A]. B[x] guard: {T} prop: so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q or: P ∨ Q
Lemmas referenced :  subtype_rel_self all_wf not_wf or_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction sqequalRule sqequalHypSubstitution dependentIntersectionElimination dependentIntersectionEqElimination thin cut hypothesis applyEquality tokenEquality instantiate extract_by_obid isectElimination universeEquality setEquality functionEquality equalityTransitivity equalitySymmetry lambdaEquality cumulativity hypothesisEquality because_Cache functionExtensionality setElimination rename

Latex:
\mforall{}ss:SeparationSpace.  \mforall{}x,y,z:Point.    (x  \#  y  {}\mRightarrow{}  (x  \#  z  \mvee{}  y  \#  z))



Date html generated: 2017_10_02-PM-03_24_06
Last ObjectModification: 2017_06_22-PM-06_55_26

Theory : constructive!algebra


Home Index