Nuprl Lemma : permutation-ss_wf

[ss:SeparationSpace]. (permutation-ss(ss) ∈ SeparationSpace)


Proof




Definitions occuring in Statement :  permutation-ss: permutation-ss(ss) separation-space: SeparationSpace uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] fun-ss: A ⟶ ss btrue: tt bfalse: ff eq_atom: =a y ifthenelse: if then else fi  record-update: r[x := v] mk-ss: mk-ss prod-ss: ss1 × ss2 record-select: r.x ss-point: Point subtype_rel: A ⊆B so_lambda: λ2x.t[x] permutation-ss: permutation-ss(ss) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  separation-space_wf ss-eq_wf all_wf subtype_rel_self ss-point_wf fun-ss_wf prod-ss_wf set-ss_wf
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality functionEquality productEquality applyEquality spreadEquality lambdaEquality hypothesis because_Cache hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[ss:SeparationSpace].  (permutation-ss(ss)  \mmember{}  SeparationSpace)



Date html generated: 2016_11_08-AM-09_12_40
Last ObjectModification: 2016_11_03-AM-00_20_59

Theory : inner!product!spaces


Home Index