Nuprl Lemma : ss-sep-symmetry

ss:SeparationSpace. ∀x,y:Point(ss).  (x  x)


Proof




Definitions occuring in Statement :  ss-sep: y ss-point: Point(ss) separation-space: SeparationSpace all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: or: P ∨ Q not: ¬A false: False
Lemmas referenced :  ss-sep_wf ss-point_wf separation-space_wf ss-sep-or ss-sep-irrefl
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType unionElimination dependent_functionElimination independent_functionElimination voidElimination

Latex:
\mforall{}ss:SeparationSpace.  \mforall{}x,y:Point(ss).    (x  \#  y  {}\mRightarrow{}  y  \#  x)



Date html generated: 2019_10_31-AM-07_26_20
Last ObjectModification: 2019_09_19-PM-04_06_13

Theory : constructive!algebra


Home Index