Nuprl Lemma : ss-sep-symmetry
∀ss:SeparationSpace. ∀x,y:Point(ss).  (x # y 
⇒ y # x)
Proof
Definitions occuring in Statement : 
ss-sep: x # y
, 
ss-point: Point(ss)
, 
separation-space: SeparationSpace
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
Lemmas referenced : 
ss-sep_wf, 
ss-point_wf, 
separation-space_wf, 
ss-sep-or, 
ss-sep-irrefl
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
unionElimination, 
dependent_functionElimination, 
independent_functionElimination, 
voidElimination
Latex:
\mforall{}ss:SeparationSpace.  \mforall{}x,y:Point(ss).    (x  \#  y  {}\mRightarrow{}  y  \#  x)
Date html generated:
2019_10_31-AM-07_26_20
Last ObjectModification:
2019_09_19-PM-04_06_13
Theory : constructive!algebra
Home
Index