Nuprl Lemma : permutation-ss-eq-iff

[rv:SeparationSpace]. ∀[f,g,f',g':Point ⟶ Point].  uiff(<f, g> ≡ <f', g'>;(∀x:Point. x ≡ f' x) ∧ (∀x:Point. x ≡ g'\000C x))


Proof




Definitions occuring in Statement :  permutation-ss: permutation-ss(ss) ss-eq: x ≡ y ss-point: Point separation-space: SeparationSpace uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q apply: a function: x:A ⟶ B[x] pair: <a, b>
Definitions unfolded in proof :  guard: {T} false: False so_apply: x[s] so_lambda: λ2x.t[x] prop: exists: x:A. B[x] or: P ∨ Q fun-sep: fun-sep(ss;A;f;g) implies:  Q not: ¬A ss-eq: x ≡ y all: x:A. B[x] uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) top: Top member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  separation-space_wf ss-eq_wf all_wf fun-sep_wf or_wf not_wf exists_wf ss-point_wf ss-sep_wf permutation-ss-eq
Rules used in proof :  functionEquality productEquality unionElimination dependent_functionElimination independent_pairEquality productElimination because_Cache inrFormation lambdaEquality functionExtensionality applyEquality hypothesisEquality dependent_pairFormation inlFormation independent_functionElimination lambdaFormation independent_pairFormation hypothesis voidEquality voidElimination isect_memberEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut sqequalRule isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:SeparationSpace].  \mforall{}[f,g,f',g':Point  {}\mrightarrow{}  Point].
    uiff(<f,  g>  \mequiv{}  <f',  g'>(\mforall{}x:Point.  f  x  \mequiv{}  f'  x)  \mwedge{}  (\mforall{}x:Point.  g  x  \mequiv{}  g'  x))



Date html generated: 2016_11_08-AM-09_12_50
Last ObjectModification: 2016_11_03-AM-00_27_44

Theory : inner!product!spaces


Home Index