Nuprl Lemma : permutation-ss-eq-iff
∀[rv:SeparationSpace]. ∀[f,g,f',g':Point ⟶ Point].  uiff(<f, g> ≡ <f', g'>(∀x:Point. f x ≡ f' x) ∧ (∀x:Point. g x ≡ g'\000C x))
Proof
Definitions occuring in Statement : 
permutation-ss: permutation-ss(ss), 
ss-eq: x ≡ y, 
ss-point: Point, 
separation-space: SeparationSpace, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
pair: <a, b>
Definitions unfolded in proof : 
guard: {T}, 
false: False, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
prop: ℙ, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
fun-sep: fun-sep(ss;A;f;g), 
implies: P ⇒ Q, 
not: ¬A, 
ss-eq: x ≡ y, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
top: Top, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
separation-space_wf, 
ss-eq_wf, 
all_wf, 
fun-sep_wf, 
or_wf, 
not_wf, 
exists_wf, 
ss-point_wf, 
ss-sep_wf, 
permutation-ss-eq
Rules used in proof : 
functionEquality, 
productEquality, 
unionElimination, 
dependent_functionElimination, 
independent_pairEquality, 
productElimination, 
because_Cache, 
inrFormation, 
lambdaEquality, 
functionExtensionality, 
applyEquality, 
hypothesisEquality, 
dependent_pairFormation, 
inlFormation, 
independent_functionElimination, 
lambdaFormation, 
independent_pairFormation, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
sqequalRule, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[rv:SeparationSpace].  \mforall{}[f,g,f',g':Point  {}\mrightarrow{}  Point].
    uiff(<f,  g>  \mequiv{}  <f',  g'>(\mforall{}x:Point.  f  x  \mequiv{}  f'  x)  \mwedge{}  (\mforall{}x:Point.  g  x  \mequiv{}  g'  x))
Date html generated:
2016_11_08-AM-09_12_50
Last ObjectModification:
2016_11_03-AM-00_27_44
Theory : inner!product!spaces
Home
Index