Nuprl Lemma : permutation-ss-eq

[rv,f,g,f',g':Top].  (<f, g> ≡ <f', g'> ~ ¬(fun-sep(rv;Point;f;f') ∨ fun-sep(rv;Point;g;g')))


Proof




Definitions occuring in Statement :  permutation-ss: permutation-ss(ss) fun-sep: fun-sep(ss;A;f;g) ss-eq: x ≡ y ss-point: Point uall: [x:A]. B[x] top: Top not: ¬A or: P ∨ Q pair: <a, b> sqequal: t
Definitions unfolded in proof :  member: t ∈ T ss-eq: x ≡ y uall: [x:A]. B[x]
Lemmas referenced :  top_wf permutation-ss-sep
Rules used in proof :  because_Cache hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut sqequalRule isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv,f,g,f',g':Top].    (<f,  g>  \mequiv{}  <f',  g'>  \msim{}  \mneg{}(fun-sep(rv;Point;f;f')  \mvee{}  fun-sep(rv;Point;g;g')))



Date html generated: 2016_11_08-AM-09_12_47
Last ObjectModification: 2016_11_03-AM-10_29_41

Theory : inner!product!spaces


Home Index