Nuprl Lemma : permutation-s-group-sep-or
∀rv:SeparationSpace. ∀sepw:x:Point ⟶ y:{y:Point| x # y}  ⟶ x # y. ∀x,x',y,y':Point.
  (let f,g = x 
   in let f',g' = y 
      in <f o f', g' o g> # let f,g = x' 
                            in let f',g' = y' 
                               in <f o f', g' o g>
  ⇒ (x # x' ∨ y # y'))
Proof
Definitions occuring in Statement : 
permutation-ss: permutation-ss(ss), 
ss-sep: x # y, 
ss-point: Point, 
separation-space: SeparationSpace, 
compose: f o g, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
or: P ∨ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
spread: spread def, 
pair: <a, b>
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
squash: ↓T, 
prop: ℙ, 
top: Top, 
fun-sep: fun-sep(ss;A;f;g), 
compose: f o g, 
or: P ∨ Q, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}
Lemmas referenced : 
ss-point_wf, 
ss-sep_wf, 
squash_wf, 
permutation-ss-point, 
permutation-ss_wf, 
separation-space_wf, 
or_wf, 
exists_wf, 
permutation-ss-sep, 
ss-sep-or, 
ss-sep-symmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
imageElimination, 
dependent_set_memberEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
productElimination, 
sqequalRule, 
because_Cache, 
functionEquality, 
setEquality, 
unionElimination, 
lambdaEquality, 
independent_functionElimination, 
inrFormation, 
inlFormation, 
dependent_pairFormation, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}rv:SeparationSpace.  \mforall{}sepw:x:Point  {}\mrightarrow{}  y:\{y:Point|  x  \#  y\}    {}\mrightarrow{}  x  \#  y.  \mforall{}x,x',y,y':Point.
    (let  f,g  =  x 
      in  let  f',g'  =  y 
            in  <f  o  f',  g'  o  g>  \#  let  f,g  =  x' 
                                                        in  let  f',g'  =  y' 
                                                              in  <f  o  f',  g'  o  g>
    {}\mRightarrow{}  (x  \#  x'  \mvee{}  y  \#  y'))
Date html generated:
2017_10_02-PM-03_25_18
Last ObjectModification:
2017_07_12-PM-01_51_45
Theory : constructive!algebra
Home
Index