Nuprl Lemma : permutation-s-group-sep-or

rv:SeparationSpace. ∀sepw:x:Point ⟶ y:{y:Point| y}  ⟶ y. ∀x,x',y,y':Point.
  (let f,g 
   in let f',g' 
      in <f', g' g> let f,g x' 
                            in let f',g' y' 
                               in <f', g' g>
   (x x' ∨ y'))


Proof




Definitions occuring in Statement :  permutation-ss: permutation-ss(ss) ss-sep: y ss-point: Point separation-space: SeparationSpace compose: g all: x:A. B[x] implies:  Q or: P ∨ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] spread: spread def pair: <a, b>
Definitions unfolded in proof :  all: x:A. B[x] sq_stable: SqStable(P) implies:  Q member: t ∈ T uall: [x:A]. B[x] squash: T prop: top: Top fun-sep: fun-sep(ss;A;f;g) compose: g or: P ∨ Q exists: x:A. B[x] and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] guard: {T}
Lemmas referenced :  ss-point_wf ss-sep_wf squash_wf permutation-ss-point permutation-ss_wf separation-space_wf or_wf exists_wf permutation-ss-sep ss-sep-or ss-sep-symmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction applyEquality functionExtensionality hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination imageElimination dependent_set_memberEquality isect_memberEquality voidElimination voidEquality setElimination rename productElimination sqequalRule because_Cache functionEquality setEquality unionElimination lambdaEquality independent_functionElimination inrFormation inlFormation dependent_pairFormation imageMemberEquality baseClosed

Latex:
\mforall{}rv:SeparationSpace.  \mforall{}sepw:x:Point  {}\mrightarrow{}  y:\{y:Point|  x  \#  y\}    {}\mrightarrow{}  x  \#  y.  \mforall{}x,x',y,y':Point.
    (let  f,g  =  x 
      in  let  f',g'  =  y 
            in  <f  o  f',  g'  o  g>  \#  let  f,g  =  x' 
                                                        in  let  f',g'  =  y' 
                                                              in  <f  o  f',  g'  o  g>
    {}\mRightarrow{}  (x  \#  x'  \mvee{}  y  \#  y'))



Date html generated: 2017_10_02-PM-03_25_18
Last ObjectModification: 2017_07_12-PM-01_51_45

Theory : constructive!algebra


Home Index