Step
*
of Lemma
allsetmem_functionality
∀A:coSet{i:l}. ∀P:{a:coSet{i:l}| (a ∈ A)} ⟶ ℙ. ∀B:coSet{i:l}.
(set-predicate{i:l}(A;a.P[a])
⇒ seteq(A;B)
⇒ (∀a∈A.P[a]
⇐⇒ ∀a∈B.P[a]))
BY
{ (RepeatFor 3 (Intro)
THEN (D 0 THENA (UniverseIsType THEN Fold `member` 0 THEN BLemma `set-predicate_wf` THEN Auto))
THEN Intro
THEN (Assert set-predicate{i:l}(B;a.P[a]) BY
(RepeatFor 2 (ParallelOp -2) THEN ParallelLast THEN RWO "5<" 0 THEN Auto))) }
1
1. A : coSet{i:l}
2. P : {a:coSet{i:l}| (a ∈ A)} ⟶ ℙ
3. B : coSet{i:l}
4. set-predicate{i:l}(A;a.P[a])
5. seteq(A;B)
6. set-predicate{i:l}(B;a.P[a])
⊢ ∀a∈A.P[a]
⇐⇒ ∀a∈B.P[a]
Latex:
Latex:
\mforall{}A:coSet\{i:l\}. \mforall{}P:\{a:coSet\{i:l\}| (a \mmember{} A)\} {}\mrightarrow{} \mBbbP{}. \mforall{}B:coSet\{i:l\}.
(set-predicate\{i:l\}(A;a.P[a]) {}\mRightarrow{} seteq(A;B) {}\mRightarrow{} (\mforall{}a\mmember{}A.P[a] \mLeftarrow{}{}\mRightarrow{} \mforall{}a\mmember{}B.P[a]))
By
Latex:
(RepeatFor 3 (Intro)
THEN (D 0 THENA (UniverseIsType THEN Fold `member` 0 THEN BLemma `set-predicate\_wf` THEN Auto))
THEN Intro
THEN (Assert set-predicate\{i:l\}(B;a.P[a]) BY
(RepeatFor 2 (ParallelOp -2) THEN ParallelLast THEN RWO "5<" 0 THEN Auto)))
Home
Index