Nuprl Lemma : allsetmem_functionality
∀A:coSet{i:l}. ∀P:{a:coSet{i:l}| (a ∈ A)}  ⟶ ℙ. ∀B:coSet{i:l}.
  (set-predicate{i:l}(A;a.P[a]) 
⇒ seteq(A;B) 
⇒ (∀a∈A.P[a] 
⇐⇒ ∀a∈B.P[a]))
Proof
Definitions occuring in Statement : 
allsetmem: ∀a∈A.P[a]
, 
set-predicate: set-predicate{i:l}(s;a.P[a])
, 
setmem: (x ∈ s)
, 
seteq: seteq(s1;s2)
, 
coSet: coSet{i:l}
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set-predicate: set-predicate{i:l}(s;a.P[a])
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
seteq_wf, 
set-predicate_wf, 
setmem_wf, 
coSet_wf, 
setmem_functionality, 
seteq_weakening, 
seteq_inversion, 
allsetmem-iff, 
allsetmem_wf, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
sqequalRule, 
lambdaEquality_alt, 
cumulativity, 
inhabitedIsType, 
setElimination, 
rename, 
applyEquality, 
dependent_set_memberEquality_alt, 
universeEquality, 
functionIsType, 
setIsType, 
independent_functionElimination, 
productElimination, 
independent_pairFormation, 
promote_hyp, 
instantiate
Latex:
\mforall{}A:coSet\{i:l\}.  \mforall{}P:\{a:coSet\{i:l\}|  (a  \mmember{}  A)\}    {}\mrightarrow{}  \mBbbP{}.  \mforall{}B:coSet\{i:l\}.
    (set-predicate\{i:l\}(A;a.P[a])  {}\mRightarrow{}  seteq(A;B)  {}\mRightarrow{}  (\mforall{}a\mmember{}A.P[a]  \mLeftarrow{}{}\mRightarrow{}  \mforall{}a\mmember{}B.P[a]))
Date html generated:
2019_10_31-AM-06_33_33
Last ObjectModification:
2018_11_10-PM-00_34_57
Theory : constructive!set!theory
Home
Index