Nuprl Lemma : allsetmem-iff

A:coSet{i:l}
  ∀[P:{a:coSet{i:l}| (a ∈ A)}  ⟶ ℙ]. (set-predicate{i:l}(A;a.P[a])  (∀a∈A.P[a] ⇐⇒ ∀a:coSet{i:l}. ((a ∈ A)  P[a])))


Proof




Definitions occuring in Statement :  allsetmem: a∈A.P[a] set-predicate: set-predicate{i:l}(s;a.P[a]) setmem: (x ∈ s) coSet: coSet{i:l} uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] prop: so_apply: x[s] subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q mk-coset: mk-coset(T;f) rev_implies:  Q top: Top exists: x:A. B[x] set-predicate: set-predicate{i:l}(s;a.P[a]) guard: {T} allsetmem: a∈A.P[a] set-item: set-item(s;x) set-dom: set-dom(s) pi1: fst(t) pi2: snd(t)
Lemmas referenced :  set-predicate_wf setmem_wf coSet_wf subtype_coSet coSet_subtype allsetmem_wf subtype_rel_self setmem-mk-coset istype-void setmem-coset seteq_wf seteq_inversion set-item_wf mk-coset_wf set-item-mem set-dom_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality_alt cumulativity hypothesis inhabitedIsType setElimination rename applyEquality dependent_set_memberEquality_alt because_Cache functionIsType setIsType universeEquality independent_pairFormation hypothesis_subsumption productElimination instantiate isect_memberEquality_alt voidElimination dependent_functionElimination independent_functionElimination dependent_pairFormation_alt

Latex:
\mforall{}A:coSet\{i:l\}
    \mforall{}[P:\{a:coSet\{i:l\}|  (a  \mmember{}  A)\}    {}\mrightarrow{}  \mBbbP{}]
        (set-predicate\{i:l\}(A;a.P[a])  {}\mRightarrow{}  (\mforall{}a\mmember{}A.P[a]  \mLeftarrow{}{}\mRightarrow{}  \mforall{}a:coSet\{i:l\}.  ((a  \mmember{}  A)  {}\mRightarrow{}  P[a])))



Date html generated: 2019_10_31-AM-06_33_28
Last ObjectModification: 2018_11_10-PM-00_34_55

Theory : constructive!set!theory


Home Index