Nuprl Lemma : setmem-coset
∀T:Type. ∀f:T ⟶ coSet{i:l}. ∀t:T.  (f t ∈ mk-coset(T;f))
Proof
Definitions occuring in Statement : 
setmem: (x ∈ s)
, 
mk-coset: mk-coset(T;f)
, 
coSet: coSet{i:l}
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
coSet_wf, 
seteq_wf, 
seteq_weakening, 
setmem-mk-coset
Rules used in proof : 
universeEquality, 
cumulativity, 
functionEquality, 
independent_functionElimination, 
because_Cache, 
applyEquality, 
dependent_functionElimination, 
hypothesisEquality, 
dependent_pairFormation, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}T:Type.  \mforall{}f:T  {}\mrightarrow{}  coSet\{i:l\}.  \mforall{}t:T.    (f  t  \mmember{}  mk-coset(T;f))
Date html generated:
2018_07_29-AM-09_52_00
Last ObjectModification:
2018_07_20-PM-06_07_35
Theory : constructive!set!theory
Home
Index