Nuprl Lemma : setmem-mk-coset
∀[T,f,x:Top].  ((x ∈ mk-coset(T;f)) ~ ∃t:T. seteq(x;f t))
Proof
Definitions occuring in Statement : 
setmem: (x ∈ s)
, 
seteq: seteq(s1;s2)
, 
mk-coset: mk-coset(T;f)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
coW-dom: coW-dom(a.B[a];w)
, 
coW-item: coW-item(w;b)
, 
coWmem: coWmem(a.B[a];z;w)
, 
setmem: (x ∈ s)
, 
mk-coset: mk-coset(T;f)
, 
seteq: seteq(s1;s2)
Lemmas referenced : 
top_wf
Rules used in proof : 
because_Cache, 
hypothesisEquality, 
thin, 
isectElimination, 
isect_memberEquality, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
sqequalAxiom, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[T,f,x:Top].    ((x  \mmember{}  mk-coset(T;f))  \msim{}  \mexists{}t:T.  seteq(x;f  t))
Date html generated:
2018_07_29-AM-09_50_07
Last ObjectModification:
2018_07_18-AM-10_53_51
Theory : constructive!set!theory
Home
Index