Nuprl Lemma : setmem-mk-coset

[T,f,x:Top].  ((x ∈ mk-coset(T;f)) ~ ∃t:T. seteq(x;f t))


Proof




Definitions occuring in Statement :  setmem: (x ∈ s) seteq: seteq(s1;s2) mk-coset: mk-coset(T;f) uall: [x:A]. B[x] top: Top exists: x:A. B[x] apply: a sqequal: t
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] pi2: snd(t) pi1: fst(t) coW-dom: coW-dom(a.B[a];w) coW-item: coW-item(w;b) coWmem: coWmem(a.B[a];z;w) setmem: (x ∈ s) mk-coset: mk-coset(T;f) seteq: seteq(s1;s2)
Lemmas referenced :  top_wf
Rules used in proof :  because_Cache hypothesisEquality thin isectElimination isect_memberEquality sqequalHypSubstitution hypothesis extract_by_obid sqequalAxiom cut introduction isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[T,f,x:Top].    ((x  \mmember{}  mk-coset(T;f))  \msim{}  \mexists{}t:T.  seteq(x;f  t))



Date html generated: 2018_07_29-AM-09_50_07
Last ObjectModification: 2018_07_18-AM-10_53_51

Theory : constructive!set!theory


Home Index