Nuprl Lemma : seteq_wf

[s1,s2:coSet{i:l}].  (seteq(s1;s2) ∈ ℙ)


Proof




Definitions occuring in Statement :  seteq: seteq(s1;s2) coSet: coSet{i:l} uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  coSet: coSet{i:l} so_apply: x[s] so_lambda: λ2x.t[x] seteq: seteq(s1;s2) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  coSet_wf coW-equiv_wf
Rules used in proof :  because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality hypothesis hypothesisEquality lambdaEquality universeEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[s1,s2:coSet\{i:l\}].    (seteq(s1;s2)  \mmember{}  \mBbbP{})



Date html generated: 2018_07_29-AM-09_49_42
Last ObjectModification: 2018_07_11-AM-11_17_32

Theory : constructive!set!theory


Home Index