Nuprl Lemma : set-item-mem
∀s:coSet{i:l}. ∀x:set-dom(s).  (set-item(s;x) ∈ s)
Proof
Definitions occuring in Statement : 
setmem: (x ∈ s)
, 
set-item: set-item(s;x)
, 
set-dom: set-dom(s)
, 
coSet: coSet{i:l}
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
refl: Refl(T;x,y.E[x; y])
, 
guard: {T}
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
seteq-equiv, 
coSet_wf, 
set-dom_wf, 
seteq_wf, 
set-item_wf, 
setmem-iff
Rules used in proof : 
dependent_pairFormation, 
independent_functionElimination, 
productElimination, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}s:coSet\{i:l\}.  \mforall{}x:set-dom(s).    (set-item(s;x)  \mmember{}  s)
Date html generated:
2018_07_29-AM-09_50_03
Last ObjectModification:
2018_07_20-PM-05_45_52
Theory : constructive!set!theory
Home
Index