Nuprl Lemma : set-item-mem

s:coSet{i:l}. ∀x:set-dom(s).  (set-item(s;x) ∈ s)


Proof




Definitions occuring in Statement :  setmem: (x ∈ s) set-item: set-item(s;x) set-dom: set-dom(s) coSet: coSet{i:l} all: x:A. B[x]
Definitions unfolded in proof :  refl: Refl(T;x,y.E[x; y]) guard: {T} equiv_rel: EquivRel(T;x,y.E[x; y]) prop: exists: x:A. B[x] implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  seteq-equiv coSet_wf set-dom_wf seteq_wf set-item_wf setmem-iff
Rules used in proof :  dependent_pairFormation independent_functionElimination productElimination hypothesis hypothesisEquality isectElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}s:coSet\{i:l\}.  \mforall{}x:set-dom(s).    (set-item(s;x)  \mmember{}  s)



Date html generated: 2018_07_29-AM-09_50_03
Last ObjectModification: 2018_07_20-PM-05_45_52

Theory : constructive!set!theory


Home Index