Nuprl Lemma : seteq-equiv
EquivRel(coSet{i:l};x,y.seteq(x;y))
Proof
Definitions occuring in Statement : 
seteq: seteq(s1;s2)
, 
coSet: coSet{i:l}
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
coSet: coSet{i:l}
, 
seteq: seteq(s1;s2)
Lemmas referenced : 
coW-equiv-equiv_rel
Rules used in proof : 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
dependent_functionElimination, 
universeEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
EquivRel(coSet\{i:l\};x,y.seteq(x;y))
Date html generated:
2018_07_29-AM-09_49_44
Last ObjectModification:
2018_07_11-AM-11_47_24
Theory : constructive!set!theory
Home
Index