Nuprl Lemma : seteq-equiv

EquivRel(coSet{i:l};x,y.seteq(x;y))


Proof




Definitions occuring in Statement :  seteq: seteq(s1;s2) coSet: coSet{i:l} equiv_rel: EquivRel(T;x,y.E[x; y])
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] coSet: coSet{i:l} seteq: seteq(s1;s2)
Lemmas referenced :  coW-equiv-equiv_rel
Rules used in proof :  hypothesis hypothesisEquality lambdaEquality dependent_functionElimination universeEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
EquivRel(coSet\{i:l\};x,y.seteq(x;y))



Date html generated: 2018_07_29-AM-09_49_44
Last ObjectModification: 2018_07_11-AM-11_47_24

Theory : constructive!set!theory


Home Index