Nuprl Lemma : coW-equiv-equiv_rel

[A:𝕌']. ∀B:A ⟶ Type. EquivRel(coW(A;a.B[a]);w,w'.coW-equiv(a.B[a];w;w'))


Proof




Definitions occuring in Statement :  coW-equiv: coW-equiv(a.B[a];w;w') coW: coW(A;a.B[a]) equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B sym: Sym(T;x,y.E[x; y]) implies:  Q guard: {T} prop: trans: Trans(T;x,y.E[x; y]) uimplies: supposing a
Lemmas referenced :  coW_wf coW-equiv_inversion coW-equiv_wf coW-equiv_transitivity coW-equiv_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity applyEquality hypothesis because_Cache dependent_functionElimination independent_functionElimination functionEquality universeEquality independent_isectElimination

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}B:A  {}\mrightarrow{}  Type.  EquivRel(coW(A;a.B[a]);w,w'.coW-equiv(a.B[a];w;w'))



Date html generated: 2018_07_25-PM-01_48_01
Last ObjectModification: 2018_07_11-AM-11_47_44

Theory : co-recursion


Home Index