Nuprl Lemma : coW-equiv-equiv_rel
∀[A:𝕌']. ∀B:A ⟶ Type. EquivRel(coW(A;a.B[a]);w,w'.coW-equiv(a.B[a];w;w'))
Proof
Definitions occuring in Statement : 
coW-equiv: coW-equiv(a.B[a];w;w')
, 
coW: coW(A;a.B[a])
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
sym: Sym(T;x,y.E[x; y])
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
prop: ℙ
, 
trans: Trans(T;x,y.E[x; y])
, 
uimplies: b supposing a
Lemmas referenced : 
coW_wf, 
coW-equiv_inversion, 
coW-equiv_wf, 
coW-equiv_transitivity, 
coW-equiv_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
applyEquality, 
hypothesis, 
because_Cache, 
dependent_functionElimination, 
independent_functionElimination, 
functionEquality, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}B:A  {}\mrightarrow{}  Type.  EquivRel(coW(A;a.B[a]);w,w'.coW-equiv(a.B[a];w;w'))
Date html generated:
2018_07_25-PM-01_48_01
Last ObjectModification:
2018_07_11-AM-11_47_44
Theory : co-recursion
Home
Index