Nuprl Lemma : coW-equiv_transitivity
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w1,w2,w3:coW(A;a.B[a])].
  (coW-equiv(a.B[a];w1;w2) 
⇒ coW-equiv(a.B[a];w2;w3) 
⇒ coW-equiv(a.B[a];w1;w3))
Proof
Definitions occuring in Statement : 
coW-equiv: coW-equiv(a.B[a];w;w')
, 
coW: coW(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
win2: win2(g)
, 
coW-equiv: coW-equiv(a.B[a];w;w')
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
coW_wf, 
coW-equiv_wf, 
nat_wf, 
coW-trans_wf
Rules used in proof : 
universeEquality, 
functionEquality, 
cumulativity, 
instantiate, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
extract_by_obid, 
introduction, 
rename, 
hypothesisEquality, 
thin, 
isectElimination, 
hypothesis, 
cut, 
sqequalHypSubstitution, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w1,w2,w3:coW(A;a.B[a])].
    (coW-equiv(a.B[a];w1;w2)  {}\mRightarrow{}  coW-equiv(a.B[a];w2;w3)  {}\mRightarrow{}  coW-equiv(a.B[a];w1;w3))
Date html generated:
2018_07_25-PM-01_47_56
Last ObjectModification:
2018_07_11-PM-00_11_45
Theory : co-recursion
Home
Index