Nuprl Lemma : coW-equiv_transitivity

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w1,w2,w3:coW(A;a.B[a])].
  (coW-equiv(a.B[a];w1;w2)  coW-equiv(a.B[a];w2;w3)  coW-equiv(a.B[a];w1;w3))


Proof




Definitions occuring in Statement :  coW-equiv: coW-equiv(a.B[a];w;w') coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  prop: so_apply: x[s] so_lambda: λ2x.t[x] member: t ∈ T win2: win2(g) coW-equiv: coW-equiv(a.B[a];w;w') implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  coW_wf coW-equiv_wf nat_wf coW-trans_wf
Rules used in proof :  universeEquality functionEquality cumulativity instantiate applyEquality lambdaEquality sqequalRule extract_by_obid introduction rename hypothesisEquality thin isectElimination hypothesis cut sqequalHypSubstitution lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w1,w2,w3:coW(A;a.B[a])].
    (coW-equiv(a.B[a];w1;w2)  {}\mRightarrow{}  coW-equiv(a.B[a];w2;w3)  {}\mRightarrow{}  coW-equiv(a.B[a];w1;w3))



Date html generated: 2018_07_25-PM-01_47_56
Last ObjectModification: 2018_07_11-PM-00_11_45

Theory : co-recursion


Home Index