Nuprl Lemma : coW-trans_wf
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w1,w2,w3:coW(A;a.B[a])]. ∀[n:ℕ]. ∀[X:win2strat(coW-game(a.B[a];w1;w2);n)].
∀[Y:win2strat(coW-game(a.B[a];w2;w3);n)].
  (coW-trans(X; Y) ∈ win2strat(coW-game(a.B[a];w1;w3);n))
Proof
Definitions occuring in Statement : 
coW-trans: coW-trans(X; Y)
, 
coW-game: coW-game(a.B[a];w;w')
, 
coW: coW(A;a.B[a])
, 
win2strat: win2strat(g;n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
coW-pos-lens: coW-pos-lens(p;i;j)
, 
nat_plus: ℕ+
, 
rev_uimplies: rev_uimplies(P;Q)
, 
nequal: a ≠ b ∈ T 
, 
coW-trans: coW-trans(X; Y)
, 
play-truncate: play-truncate(f;m)
, 
copathAgree: copathAgree(a.B[a];w;x;y)
, 
copath: copath(a.B[a];w)
, 
copath-length: copath-length(p)
, 
label: ...$L... t
, 
copath-nil: ()
, 
coWtransInvariant: coWtransInvariant(x.B[x];w1;w2;w3;k;X;Y;a;b;moves)
, 
sg-legal2: Legal2(x;y)
, 
cand: A c∧ B
, 
seq-item: s[i]
, 
assert: ↑b
, 
bnot: ¬bb
, 
exists: ∃x:A. B[x]
, 
seq-nil: seq-nil()
, 
seq-add: seq-add(s;x)
, 
let: let, 
lt_int: i <z j
, 
pi2: snd(t)
, 
sg-legal1: Legal1(x;y)
, 
sg-init: InitialPos(g)
, 
sg-pos: Pos(g)
, 
coW-game: coW-game(a.B[a];w;w')
, 
squash: ↓T
, 
less_than: a < b
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
play-item: moves[i]
, 
sequence: sequence(T)
, 
strat2play: strat2play(g;n;s)
, 
seq-truncate: seq-truncate(s;n)
, 
pi1: fst(t)
, 
seq-len: ||s||
, 
play-len: ||moves||
, 
transMoves: transMoves(X;Y;moves)
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
top: Top
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
subtract: n - m
, 
eq_int: (i =z j)
, 
win2strat: win2strat(g;n)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
, 
ge: i ≥ j 
, 
false: False
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
neg_assert_of_eq_int, 
le_weakening, 
strat2play-longer, 
subtype_rel_set, 
seq-add_wf, 
seq-add-len, 
copathAgree_refl, 
add-subtract-cancel, 
strat2play-add, 
assert_of_le_int, 
bnot_of_lt_int, 
assert_functionality_wrt_uiff, 
le_int_wf, 
mod2-2n, 
mod2-2n-plus-1, 
strat2play-invariant, 
coW-play-invariant, 
seq-truncate-item, 
mul-distributes-right, 
win2strat-properties, 
bfalse_wf, 
not-equal-2, 
eq_int_eq_false, 
subtract-add-cancel, 
seq-truncate_wf, 
add-is-int-iff, 
seq-len-truncate, 
zero-mul, 
add-mul-special, 
strat2play_subtype_le, 
play-truncate_wf, 
mul-associates, 
mul_preserves_le, 
le-add-cancel-alt, 
sequence_wf, 
strat2play_subtype, 
or_wf, 
subtype_rel_wf, 
member_wf, 
pi2_wf, 
pi1_wf, 
and_wf, 
coWtransInvariant_wf, 
le_antisymmetry_iff, 
copathAgree-nil, 
sg-legal2_wf, 
minus-zero, 
le-add-cancel2, 
sg-init_wf, 
not-lt-2, 
decidable__lt, 
seq-item_wf, 
seq-len_wf, 
copathAgree_wf, 
copath_wf, 
equal-wf-base-T, 
int_seg_wf, 
copath-nil_wf, 
assert-bnot, 
bool_cases_sqequal, 
assert_of_lt_int, 
lt_int_wf, 
copath-length_wf, 
set_subtype_base, 
iff_weakening_equal, 
subtype_rel_self, 
simple-game_wf, 
true_wf, 
squash_wf, 
sg-legal1_wf, 
strat2play-invariant-1, 
sg-pos_wf, 
lelt_wf, 
play-item_wf, 
copath_length_nil_lemma, 
le_transitivity, 
set_wf, 
mul-commutes, 
mul-distributes, 
le_reflexive, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases, 
equal_wf, 
assert_of_bnot, 
eqff_to_assert, 
iff_weakening_uiff, 
iff_transitivity, 
assert_of_eq_int, 
eqtt_to_assert, 
uiff_transitivity, 
play-len_wf, 
equal-wf-T-base, 
not-le-2, 
strat2play_wf, 
win2strat_subtype, 
not_wf, 
bnot_wf, 
assert_wf, 
int_subtype_base, 
equal-wf-base, 
bool_wf, 
eq_int_wf, 
coW_wf, 
nat_wf, 
le_weakening2, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-minus, 
minus-add, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
condition-implies-le, 
less-iff-le, 
not-ge-2, 
subtract_wf, 
decidable__le, 
le_wf, 
false_wf, 
coW-game_wf, 
win2strat_wf, 
less_than_wf, 
ge_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
nat_properties
Rules used in proof : 
spreadEquality, 
orFunctionality, 
addLevel, 
inrFormation, 
levelHypothesis, 
equalityUniverse, 
dependentIntersectionEqElimination, 
productEquality, 
inlFormation, 
promote_hyp, 
dependent_pairFormation, 
dependent_pairEquality, 
independent_pairEquality, 
applyLambdaEquality, 
hyp_replacement, 
imageElimination, 
imageMemberEquality, 
multiplyEquality, 
impliesFunctionality, 
equalityElimination, 
setEquality, 
dependentIntersection_memberEquality, 
dependentIntersectionElimination, 
baseClosed, 
closedConclusion, 
baseApply, 
universeEquality, 
functionEquality, 
instantiate, 
minusEquality, 
intEquality, 
addEquality, 
productElimination, 
unionElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
voidEquality, 
because_Cache, 
functionExtensionality, 
applyEquality, 
cumulativity, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
isect_memberEquality, 
dependent_functionElimination, 
lambdaEquality, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
natural_numberEquality, 
lambdaFormation, 
intWeakElimination, 
sqequalRule, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w1,w2,w3:coW(A;a.B[a])].  \mforall{}[n:\mBbbN{}].
\mforall{}[X:win2strat(coW-game(a.B[a];w1;w2);n)].  \mforall{}[Y:win2strat(coW-game(a.B[a];w2;w3);n)].
    (coW-trans(X;  Y)  \mmember{}  win2strat(coW-game(a.B[a];w1;w3);n))
Date html generated:
2018_07_25-PM-01_47_52
Last ObjectModification:
2018_07_11-AM-10_48_10
Theory : co-recursion
Home
Index