Nuprl Lemma : copathAgree-nil

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])].  ∀p:copath(a.B[a];w). copathAgree(a.B[a];w;();p)


Proof




Definitions occuring in Statement :  copathAgree: copathAgree(a.B[a];w;x;y) copath-nil: () copath: copath(a.B[a];w) coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] copath: copath(a.B[a];w) copathAgree: copathAgree(a.B[a];w;x;y) copath-nil: () member: t ∈ T nat: implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: coPathAgree: coPathAgree(a.B[a];n;w;p;q) eq_int: (i =z j) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b subtract: m nequal: a ≠ b ∈  le: A ≤ B ge: i ≥  int_upper: {i...} sq_stable: SqStable(P) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf btrue_wf assert_of_eq_int eqff_to_assert eq_int_wf equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int upper_subtype_nat false_wf nat_properties nequal-le-implies zero-add le_wf sq_stable__le not-lt-2 add_functionality_wrt_le add-commutes le-add-cancel copath_wf coW_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule cut introduction extract_by_obid isectElimination natural_numberEquality setElimination rename hypothesisEquality hypothesis unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination because_Cache lessCases sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity hypothesis_subsumption dependent_set_memberEquality applyEquality lambdaEquality intEquality functionEquality universeEquality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].    \mforall{}p:copath(a.B[a];w).  copathAgree(a.B[a];w;();p)



Date html generated: 2018_07_25-PM-01_41_14
Last ObjectModification: 2018_06_04-PM-00_30_54

Theory : co-recursion


Home Index